EspalomaCharge: Machine Learning-Enabled Ultrafast Partial Charge Assignment

被引:11
|
作者
Wang, Yuanqing [1 ,2 ,3 ]
Pulido, Ivan [1 ]
Takaba, Kenichiro [1 ,4 ]
Kaminow, Benjamin [1 ,5 ]
Scheen, Jenke [1 ]
Wang, Lily [1 ,6 ]
Chodera, John D. [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Sloan Kettering Inst, Computat & Syst Biol Program, New York, NY 10065 USA
[2] NYU, Simons Ctr Computat Chem, New York, NY 10004 USA
[3] NYU, Ctr Data Sci, New York, NY 10004 USA
[4] Asahi Kasei Pharm Corp, Pharmaceut Res Ctr, Adv Drug Discovery, Shizuoka 4102321, Japan
[5] Cornell Univ, Weill Cornell Med Coll, Triinst PhD Program Computat Biol & Med, New York, NY 10065 USA
[6] Open Mol Sci Fdn, Davis, CA 95618 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2024年 / 128卷 / 20期
基金
美国国家卫生研究院;
关键词
ATOMIC CHARGES; EFFICIENT GENERATION; AM1-BCC MODEL; FREE-ENERGIES; PARAMETERIZATION;
D O I
10.1021/acs.jpca.4c01287
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomic partial charges are crucial parameters in molecular dynamics simulation, dictating the electrostatic contributions to intermolecular energies and thereby the potential energy landscape. Traditionally, the assignment of partial charges has relied on surrogates of ab initio semiempirical quantum chemical methods such as AM1-BCC and is expensive for large systems or large numbers of molecules. We propose a hybrid physical/graph neural network-based approximation to the widely popular AM1-BCC charge model that is orders of magnitude faster while maintaining accuracy comparable to differences in AM1-BCC implementations. Our hybrid approach couples a graph neural network to a streamlined charge equilibration approach in order to predict molecule-specific atomic electronegativity and hardness parameters, followed by analytical determination of optimal charge-equilibrated parameters that preserve total molecular charge. This hybrid approach scales linearly with the number of atoms, enabling for the first time the use of fully consistent charge models for small molecules and biopolymers for the construction of next-generation self-consistent biomolecular force fields. Implemented in the free and open source package EspalomaCharge, this approach provides drop-in replacements for both AmberTools antechamber and the Open Force Field Toolkit charging workflows, in addition to stand-alone charge generation interfaces. Source code is available at https://github.com/choderalab/espaloma-charge.
引用
收藏
页码:4160 / 4167
页数:8
相关论文
共 50 条
  • [41] Machine Learning-Enabled Drug-Induced Toxicity Prediction
    Bai, Changsen
    Wu, Lianlian
    Li, Ruijiang
    Cao, Yang
    He, Song
    Bo, Xiaochen
    ADVANCED SCIENCE, 2025,
  • [42] Machine Learning-Enabled Optical Architecture Design of Perovskite Solar Cells
    Li, Zong-Zheng
    Guo, Chaorong
    Lv, Wenlei
    Huang, Peng
    Zhang, Yongyou
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (14): : 3835 - 3842
  • [43] Rapid Forecasting of Cyber Events Using Machine Learning-Enabled Features
    Ahmed, Yussuf
    Azad, Muhammad Ajmal
    Asyhari, Taufiq
    INFORMATION, 2024, 15 (01)
  • [44] Towards Requirements Engineering Activities for Machine Learning-enabled FinTech Applications
    Li, Yishu
    Keung, Jacky
    Bennin, Kwabena Ebo
    Ma, Xiaoxue
    Huang, Yangyang
    Zhang, Jingyu
    PROCEEDINGS OF THE 2023 30TH ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE, APSEC 2023, 2023, : 121 - 130
  • [45] Machine learning-enabled predictive modeling to precisely identify the antimicrobial peptides
    Mushtaq Ahmad Wani
    Prabha Garg
    Kuldeep K. Roy
    Medical & Biological Engineering & Computing, 2021, 59 : 2397 - 2408
  • [46] Modelling of Metaheuristics with Machine Learning-Enabled Cybersecurity in Unmanned Aerial Vehicles
    Rizwanullah, Mohammed
    Mengash, Hanan Abdullah
    Alamgeer, Mohammad
    Tarmissi, Khaled
    Aziz, Amira Sayed A.
    Abdelmageed, Amgad Atta
    Alsaid, Mohamed Ibrahim
    Eldesouki, Mohamed I.
    SUSTAINABILITY, 2022, 14 (24)
  • [47] Machine Learning-Enabled Triboelectric Nanogenerator for Continuous Sound Monitoring and Captioning
    Bagheri, Majid Haji
    Gu, Emma
    Khan, Asif Abdullah
    Zhang, Yanguang
    Xiao, Gaozhi
    Nankali, Mohammad
    Peng, Peng
    Xi, Pengcheng
    Ban, Dayan
    ADVANCED SENSOR RESEARCH, 2025, 4 (02):
  • [48] Wearable Optical Sensors: Toward Machine Learning-Enabled Biomarker Monitoring
    Faham, Shadab
    Faham, Sina
    Sepehri, Bakhtyar
    CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY, 2024, 7 (08): : 4175 - 4192
  • [49] Machine learning-enabled insights into the phase-transition of thermosensitive polymers
    Bejagam, Karteek
    An, Yaxin
    Singh, Samrendra
    Deshmukh, Sanket
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [50] Machine learning-enabled discovery and design of membrane-active peptides
    Lee, Ernest Y.
    Wong, Gerard C. L.
    Ferguson, Andrew L.
    BIOORGANIC & MEDICINAL CHEMISTRY, 2018, 26 (10) : 2708 - 2718