EspalomaCharge: Machine Learning-Enabled Ultrafast Partial Charge Assignment

被引:11
|
作者
Wang, Yuanqing [1 ,2 ,3 ]
Pulido, Ivan [1 ]
Takaba, Kenichiro [1 ,4 ]
Kaminow, Benjamin [1 ,5 ]
Scheen, Jenke [1 ]
Wang, Lily [1 ,6 ]
Chodera, John D. [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Sloan Kettering Inst, Computat & Syst Biol Program, New York, NY 10065 USA
[2] NYU, Simons Ctr Computat Chem, New York, NY 10004 USA
[3] NYU, Ctr Data Sci, New York, NY 10004 USA
[4] Asahi Kasei Pharm Corp, Pharmaceut Res Ctr, Adv Drug Discovery, Shizuoka 4102321, Japan
[5] Cornell Univ, Weill Cornell Med Coll, Triinst PhD Program Computat Biol & Med, New York, NY 10065 USA
[6] Open Mol Sci Fdn, Davis, CA 95618 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2024年 / 128卷 / 20期
基金
美国国家卫生研究院;
关键词
ATOMIC CHARGES; EFFICIENT GENERATION; AM1-BCC MODEL; FREE-ENERGIES; PARAMETERIZATION;
D O I
10.1021/acs.jpca.4c01287
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomic partial charges are crucial parameters in molecular dynamics simulation, dictating the electrostatic contributions to intermolecular energies and thereby the potential energy landscape. Traditionally, the assignment of partial charges has relied on surrogates of ab initio semiempirical quantum chemical methods such as AM1-BCC and is expensive for large systems or large numbers of molecules. We propose a hybrid physical/graph neural network-based approximation to the widely popular AM1-BCC charge model that is orders of magnitude faster while maintaining accuracy comparable to differences in AM1-BCC implementations. Our hybrid approach couples a graph neural network to a streamlined charge equilibration approach in order to predict molecule-specific atomic electronegativity and hardness parameters, followed by analytical determination of optimal charge-equilibrated parameters that preserve total molecular charge. This hybrid approach scales linearly with the number of atoms, enabling for the first time the use of fully consistent charge models for small molecules and biopolymers for the construction of next-generation self-consistent biomolecular force fields. Implemented in the free and open source package EspalomaCharge, this approach provides drop-in replacements for both AmberTools antechamber and the Open Force Field Toolkit charging workflows, in addition to stand-alone charge generation interfaces. Source code is available at https://github.com/choderalab/espaloma-charge.
引用
收藏
页码:4160 / 4167
页数:8
相关论文
共 50 条
  • [11] Machine learning-enabled globally guaranteed evolutionary computation
    Bin Li
    Ziping Wei
    Jingjing Wu
    Shuai Yu
    Tian Zhang
    Chunli Zhu
    Dezhi Zheng
    Weisi Guo
    Chenglin Zhao
    Jun Zhang
    Nature Machine Intelligence, 2023, 5 : 457 - 467
  • [12] Machine Learning-Enabled Distribution Network Phase Identification
    Hosseini, Zohreh S.
    Khodaei, Amin
    Paaso, Aleksi
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (02) : 842 - 850
  • [13] Detailed Implementation of a Reproducible Machine Learning-Enabled Workflow
    Schackart K.E., III
    Imker H.J.
    Cook C.E.
    Data Science Journal, 2024, 23 (01)
  • [14] A Comprehensive Cloud Architecture for Machine Learning-enabled Research
    Stubbs, Joe
    Freeman, Nathan
    Indrakusuma, Dhanny
    Garcia, Christian
    Halbach, Francois
    Hammock, Cody
    Curbelo, Gilbert
    Jamthe, Anagha
    Packard, Mike
    Fields, Alex
    PRACTICE AND EXPERIENCE IN ADVANCED RESEARCH COMPUTING 2024, PEARC 2024, 2024,
  • [15] Machine learning-enabled autonomous operation for atomic force microscopes
    Kang, Seongseok
    Park, Junhong
    Lee, Manhee
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (12):
  • [16] Machine Learning-enabled Scalable Performance Prediction of Scientific Codes
    Chennupati, Gopinath
    Santhi, Nandakishore
    Romero, Phill
    Eidenbenz, Stephan
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2021, 31 (02):
  • [17] Machine learning-enabled calibration of river routing model parameters
    Zhao, Ying
    Chadha, Mayank
    Olsen, Nicholas
    Yeates, Elissa
    Turner, Josh
    Gugaratshan, Guga
    Qian, Guofeng
    Todd, Michael D.
    Hu, Zhen
    JOURNAL OF HYDROINFORMATICS, 2023, 25 (05) : 1799 - 1821
  • [18] Machine Learning-Enabled Repurposing and Design of Antifouling Polymer Brushes
    Liu, Yonglan
    Zhang, Dong
    Tang, Yijing
    Zhang, Yanxian
    Gong, Xiong
    Xie, Shaowen
    Zheng, Jie
    CHEMICAL ENGINEERING JOURNAL, 2021, 420
  • [19] Machine Learning-Enabled Adaptation of Information Fusion Software Systems
    Fry, Gerald
    Samawi, Tameem
    Lu, Kenny
    Pfeffer, Avi
    Wu, Curt
    Marotta, Steve
    Reposa, Mike
    Chong, Stephen
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [20] Transparency of artificial intelligence/machine learning-enabled medical devices
    Shick, Aubrey A.
    Webber, Christina M.
    Kiarashi, Nooshin
    Weinberg, Jessica P.
    Deoras, Aneesh
    Petrick, Nicholas
    Saha, Anindita
    Diamond, Matthew C.
    NPJ DIGITAL MEDICINE, 2024, 7 (01)