Machine Learning-Enabled Repurposing and Design of Antifouling Polymer Brushes

被引:27
|
作者
Liu, Yonglan [1 ]
Zhang, Dong [1 ]
Tang, Yijing [1 ]
Zhang, Yanxian [1 ]
Gong, Xiong [2 ]
Xie, Shaowen [3 ]
Zheng, Jie [1 ]
机构
[1] Univ Akron, Dept Chem Biomol & Corros Engn, Akron, OH 44325 USA
[2] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA
[3] Hunan Univ Technol, Coll Life Sci & Chem, Hunan Key Lab Biomed Nanomat & Devices, Zhuzhou 412007, Peoples R China
基金
美国国家科学基金会;
关键词
Machine learning; Antifouling; Polymer brush; Protein adsorption; Artificial neural network; Supporting vector regression; SELF-ASSEMBLED MONOLAYERS; METAL-ORGANIC FRAMEWORKS; MOLECULAR SIMULATIONS; PROTEIN; SURFACES; RESISTANCE; PREDICTION; ACID; METHACRYLATE); TEMPERATURE;
D O I
10.1016/j.cej.2021.129872
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Rational development of antifouling materials is of great importance for fundamental research and real-world applications. However, current experimental designs and computational modelings of antifouling materials still retain empirical flavor due to the data complexity of polymers and their associated structures/properties. In this work, we developed a data-driven, machine learning workflow, in combination with an in-house benchmark dataset of antifouling polymer brushes, to discover the potential antifouling property of existing polymer brushes using the descriptor-based artificial neural network (ANN) model and design the new antifouling polymer brushes using the group-based supporting vector regression (SVR) model. The resultant two machine learning models not only demonstrated their reliability, predictivity, and applicability, but also established the composition-structure-property relationships using both descriptors and functional groups. Finally, we synthesized different repurposed and newly designed polymer brushes, as predicted by ANN and SVR models, all of which exhibited excellent surface resistance to protein adsorption from undiluted human blood serum and plasma at optimal film thicknesses. Overall, our data-driven machine learning models can be used as an intelligent tool for determining, repurposing, and designing new superior antifouling materials beyond polymer brushes.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Machine Learning-Enabled Joint Codebook Design and Beam Selection
    Liang, Fengyu
    Cai, Yunlong
    2024 19TH INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS, ISWCS 2024, 2024, : 733 - 738
  • [2] Machine learning-enabled retrobiosynthesis of molecules
    Yu, Tianhao
    Boob, Aashutosh Girish
    Volk, Michael J.
    Liu, Xuan
    Cui, Haiyang
    Zhao, Huimin
    NATURE CATALYSIS, 2023, 6 (2) : 137 - 151
  • [3] Machine learning-enabled retrobiosynthesis of molecules
    Tianhao Yu
    Aashutosh Girish Boob
    Michael J. Volk
    Xuan Liu
    Haiyang Cui
    Huimin Zhao
    Nature Catalysis, 2023, 6 : 137 - 151
  • [4] Machine Learning-Enabled Optical Architecture Design of Perovskite Solar Cells
    Li, Zong-Zheng
    Guo, Chaorong
    Lv, Wenlei
    Huang, Peng
    Zhang, Yongyou
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (14): : 3835 - 3842
  • [5] Machine learning-enabled discovery and design of membrane-active peptides
    Lee, Ernest Y.
    Wong, Gerard C. L.
    Ferguson, Andrew L.
    BIOORGANIC & MEDICINAL CHEMISTRY, 2018, 26 (10) : 2708 - 2718
  • [6] Machine Learning-Enabled Tactile Sensor Design for Dynamic Touch Decoding
    Lu, Yuyao
    Kong, Depeng
    Yang, Geng
    Wang, Ruohan
    Pang, Gaoyang
    Luo, Huayu
    Yang, Huayong
    Xu, Kaichen
    ADVANCED SCIENCE, 2023, 10 (32)
  • [7] Machine Learning-Enabled Personalization of Programming Learning Feedback
    Alshammari, Mohammad T.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2025, 16 (02) : 1091 - 1097
  • [8] Machine Learning-Enabled Zero Touch Networks
    Shami, Abdallah
    Ong, Lyndon
    IEEE COMMUNICATIONS MAGAZINE, 2023, 61 (02) : 80 - 80
  • [9] Machine Learning-Enabled Smart Sensor Systems
    Ha, Nam
    Xu, Kai
    Ren, Guanghui
    Mitchell, Arnan
    Ou, Jian Zhen
    ADVANCED INTELLIGENT SYSTEMS, 2020, 2 (09)
  • [10] Machine learning-enabled multiplexed microfluidic sensors
    Dabbagh, Sajjad Rahmani
    Rabbi, Fazle
    Dogan, Zafer
    Yetisen, Ali Kemal
    Tasoglu, Savas
    BIOMICROFLUIDICS, 2020, 14 (06)