Transparency of artificial intelligence/machine learning-enabled medical devices

被引:0
|
作者
Aubrey A. Shick
Christina M. Webber
Nooshin Kiarashi
Jessica P. Weinberg
Aneesh Deoras
Nicholas Petrick
Anindita Saha
Matthew C. Diamond
机构
[1] U.S. Food and Drug Administration,Center for Devices and Radiological Health
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Transparency of artificial intelligence/machine learning-enabled medical devices
    Shick, Aubrey A.
    Webber, Christina M.
    Kiarashi, Nooshin
    Weinberg, Jessica P.
    Deoras, Aneesh
    Petrick, Nicholas
    Saha, Anindita
    Diamond, Matthew C.
    [J]. NPJ DIGITAL MEDICINE, 2024, 7 (01)
  • [2] Regulating Artificial Intelligence and Machine Learning-Enabled Medical Devices in Europe and the United Kingdom
    Li, Phoebe
    Williams, Robin
    Gilbert, Stephen
    Anderson, Stuart
    [J]. LAW TECHNOLOGY AND HUMANS, 2023, 5 (02): : 94 - 113
  • [3] Landscape of Oncology-Specific, FDA-Approved, Artificial Intelligence and Machine Learning-Enabled Medical Devices
    Zhu, S.
    Gilbert, M.
    Chetty, I. J.
    Siddiqui, F.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E340 - E340
  • [4] The 2021 landscape of FDA-approved artificial intelligence/machine learning-enabled medical devices: An analysis of the characteristics and intended use
    Zhu S.
    Gilbert M.
    Chetty I.
    Siddiqui F.
    [J]. International Journal of Medical Informatics, 2022, 165
  • [5] Automating the Identification of Safety Events Involving Machine Learning-Enabled Medical Devices
    Wang, Ying
    Lyell, David
    Coiera, Enrico
    Magrabi, Farah
    [J]. MEDINFO 2023 - THE FUTURE IS ACCESSIBLE, 2024, 310 : 604 - 608
  • [6] Toward artificial intelligence and machine learning-enabled frameworks for improved predictions of lifecycle environmental impacts of functional materials and devices
    Ibn-Mohammed, T.
    Mustapha, K. B.
    Abdulkareem, M.
    Fuensanta, A. Ucles
    Pecunia, V.
    Dancer, C. E. J.
    [J]. MRS COMMUNICATIONS, 2023, 13 (05) : 795 - 811
  • [7] Toward artificial intelligence and machine learning-enabled frameworks for improved predictions of lifecycle environmental impacts of functional materials and devices
    T. Ibn-Mohammed
    K. B. Mustapha
    M. Abdulkareem
    A. Ucles Fuensanta
    V. Pecunia
    C. E. J. Dancer
    [J]. MRS Communications, 2023, 13 (5) : 795 - 811
  • [8] FDA-Approved Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices: An Updated Landscape
    Joshi, Geeta
    Jain, Aditi
    Araveeti, Shalini Reddy
    Adhikari, Sabina
    Garg, Harshit
    Bhandari, Mukund
    [J]. ELECTRONICS, 2024, 13 (03)
  • [9] Machine Learning-Enabled Communication Approach for the Internet of Medical Things
    Khan, Rahim
    Ghani, Abdullah
    Chelloug, Samia Allaoua
    Amin, Mohammed
    Saeed, Aamir
    Teo, Jason
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (02): : 1569 - 1584
  • [10] Machine learning-enabled retrobiosynthesis of molecules
    Yu, Tianhao
    Boob, Aashutosh Girish
    Volk, Michael J.
    Liu, Xuan
    Cui, Haiyang
    Zhao, Huimin
    [J]. NATURE CATALYSIS, 2023, 6 (2) : 137 - 151