Toward artificial intelligence and machine learning-enabled frameworks for improved predictions of lifecycle environmental impacts of functional materials and devices

被引:0
|
作者
T. Ibn-Mohammed
K. B. Mustapha
M. Abdulkareem
A. Ucles Fuensanta
V. Pecunia
C. E. J. Dancer
机构
[1] WMG,Department of Mechanical, Materials and Manufacturing Engineering
[2] The University of Warwick,School of Sustainable Energy Engineering
[3] University of Nottingham (Malaysia Campus),undefined
[4] William Harvey Research Institute,undefined
[5] Queen Mary University,undefined
[6] Simon Fraser University,undefined
关键词
Artificial intelligence; Machine learning; Life cycle assessment; Environmental impact; Functional ceramic; Critical materials;
D O I
暂无
中图分类号
学科分类号
摘要
引用
下载
收藏
页码:795 / 811
页数:16
相关论文
共 16 条
  • [1] Toward artificial intelligence and machine learning-enabled frameworks for improved predictions of lifecycle environmental impacts of functional materials and devices
    Ibn-Mohammed, T.
    Mustapha, K. B.
    Abdulkareem, M.
    Fuensanta, A. Ucles
    Pecunia, V.
    Dancer, C. E. J.
    MRS COMMUNICATIONS, 2023, 13 (05) : 795 - 811
  • [2] Transparency of artificial intelligence/machine learning-enabled medical devices
    Shick, Aubrey A.
    Webber, Christina M.
    Kiarashi, Nooshin
    Weinberg, Jessica P.
    Deoras, Aneesh
    Petrick, Nicholas
    Saha, Anindita
    Diamond, Matthew C.
    NPJ DIGITAL MEDICINE, 2024, 7 (01)
  • [3] Transparency of artificial intelligence/machine learning-enabled medical devices
    Aubrey A. Shick
    Christina M. Webber
    Nooshin Kiarashi
    Jessica P. Weinberg
    Aneesh Deoras
    Nicholas Petrick
    Anindita Saha
    Matthew C. Diamond
    npj Digital Medicine, 7
  • [4] Regulating Artificial Intelligence and Machine Learning-Enabled Medical Devices in Europe and the United Kingdom
    Li, Phoebe
    Williams, Robin
    Gilbert, Stephen
    Anderson, Stuart
    LAW TECHNOLOGY AND HUMANS, 2023, 5 (02): : 94 - 113
  • [5] Landscape of Oncology-Specific, FDA-Approved, Artificial Intelligence and Machine Learning-Enabled Medical Devices
    Zhu, S.
    Gilbert, M.
    Chetty, I. J.
    Siddiqui, F.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E340 - E340
  • [6] Toward Design of Internet of Things and Machine Learning-Enabled Frameworks for Analysis and Prediction of Water Quality
    Rahu, Mushtaque Ahmed
    Chandio, Abdul Fattah
    Aurangzeb, Khursheed
    Karim, Sarang
    Alhussein, Musaed
    Anwar, Muhammad Shahid
    IEEE ACCESS, 2023, 11 : 101055 - 101086
  • [7] The 2021 landscape of FDA-approved artificial intelligence/machine learning-enabled medical devices: An analysis of the characteristics and intended use
    Zhu S.
    Gilbert M.
    Chetty I.
    Siddiqui F.
    International Journal of Medical Informatics, 2022, 165
  • [8] Lifecycle Regulation of Artificial Intelligence- and Machine Learning-Based Software Devices in Medicine
    Hwang, Thomas J.
    Kesselheim, Aaron S.
    Vokinger, Kerstin N.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2019, 322 (23): : 2285 - 2286
  • [9] Reaching the Full Potential of Machine Learning in Mitigating Environmental Impacts of Functional Materials
    Ying He
    Guohong Liu
    Chengjun Li
    Xiliang Yan
    Reviews of Environmental Contamination and Toxicology, 2022, 260
  • [10] Reaching the Full Potential of Machine Learning in Mitigating Environmental Impacts of Functional Materials
    He, Ying
    Liu, Guohong
    Li, Chengjun
    Yan, Xiliang
    REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2022, 260 (01)