Machine Learning-Enabled Development of Accurate Force Fields for Refrigerants

被引:6
|
作者
Wang, Ning [1 ]
Carlozo, Montana N. N. [1 ]
Marin-Rimoldi, Eliseo [1 ]
Befort, Bridgette J. J. [1 ]
Dowling, Alexander W. W. [1 ]
Maginn, Edward J. J. [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
VAPOR-LIQUID-EQUILIBRIUM; MOLECULAR-DYNAMICS; PHASE-EQUILIBRIA; INITIAL CONFIGURATIONS; BINARY-MIXTURES; SIMULATION; OPTIMIZATION; PARAMETERS; FRAMEWORK; POTENTIALS;
D O I
10.1021/acs.jctc.3c00338
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrofluorocarbon (HFC) refrigerants with zero ozone-depletingpotential have replaced chlorofluorocarbons and are now ubiquitous.However, some HFCs have high global warming potential, which has ledto calls by governments to phase out these HFCs. Technologies to recycleand repurpose these HFCs need to be developed. Therefore, thermophysicalproperties of HFCs are needed over a wide range of conditions. Molecularsimulations can help understand and predict the thermophysical propertiesof HFCs. The prediction capability of a molecular simulation is directlytied to the accuracy of the force field. In this work, we appliedand refined a machine learning-based workflow to optimize the Lennard-Jonesparameters of classical HFC force fields for HFC-143a (CF3CH3), HFC-134a (CH2FCF3), R-50 (CH4), R-170 (C2H6), and R-14 (CF4). Our workflow involves liquid density iterations with moleculardynamics simulations and vapor-liquid equilibrium (VLE) iterationswith Gibbs ensemble Monte Carlo simulations. Support vector machineclassifiers and Gaussian process surrogate models save months of simulationtime and can efficiently select optimal parameters from half a milliondistinct parameter sets. Excellent agreement as evidenced by low meanabsolute percent errors (MAPEs) of simulated liquid density (rangingfrom 0.3% to 3.4%), vapor density (ranging from 1.4% to 2.6%), vaporpressure (ranging from 1.3% to 2.8%), and enthalpy of vaporization(ranging from 0.5% to 2.7%) relative to experiments was obtained forthe recommended parameter set of each refrigerant. The performanceof each new parameter set was superior or similar to the best forcefield in the literature.
引用
收藏
页码:4546 / 4558
页数:13
相关论文
共 50 条
  • [41] Machine Learning-Enabled Image Classification for Automated Electron Microscopy
    Day, Alexandra L.
    Wahl, Carolin B.
    Gupta, Vishu
    dos Reis, Roberto
    Liao, Wei-keng
    Mirkin, Chad A.
    Dravid, Vinayak P.
    Choudhary, Alok
    Agrawal, Ankit
    MICROSCOPY AND MICROANALYSIS, 2024, 30 (03) : 456 - 465
  • [42] Machine Learning-Enabled Attacks on Anti-Phishing Blacklists
    Li, Wenhao
    Laghari, Shams Ul Arfeen
    Manickam, Selvakumar
    Chong, Yung-Wey
    Li, Binyong
    IEEE ACCESS, 2024, 12 : 191586 - 191602
  • [43] Machine Learning-Enabled Drug-Induced Toxicity Prediction
    Bai, Changsen
    Wu, Lianlian
    Li, Ruijiang
    Cao, Yang
    He, Song
    Bo, Xiaochen
    ADVANCED SCIENCE, 2025,
  • [44] A machine learning-enabled intelligent application for public health and safety
    Zhang Yong
    Zhang Xiaoming
    Mohammad Dahman Alshehri
    Neural Computing and Applications, 2023, 35 : 14551 - 14564
  • [45] Machine learning-enabled quantitative ultrasound techniques for tissue differentiation
    Hannah Thomson
    Shufan Yang
    Sandy Cochran
    Journal of Medical Ultrasonics, 2022, 49 : 517 - 528
  • [46] A Machine Learning-Enabled Spectrum Sensing Method for OFDM Systems
    Tian, Jinfeng
    Cheng, Peng
    Chen, Zhuo
    Li, Mingqi
    Hu, Honglin
    Li, Yonghui
    Vucetic, Branka
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (11) : 11374 - 11378
  • [47] Machine Learning-Enabled Hypertension Screening Through Acoustical Speech Analysis: Model Development and Validation
    Taghibeyglou, Behrad
    Kaufman, Jaycee M.
    Fossat, Yan
    IEEE ACCESS, 2024, 12 : 123621 - 123629
  • [48] Machine Learning Force Fields
    Unke, Oliver T.
    Chmiela, Stefan
    Sauceda, Huziel E.
    Gastegger, Michael
    Poltaysky, Igor
    Schuett, Kristof T.
    Tkatchenko, Alexandre
    Mueller, Klaus-Robert
    CHEMICAL REVIEWS, 2021, 121 (16) : 10142 - 10186
  • [49] Efficient interatomic descriptors for accurate machine learning force fields of extended molecules
    Adil Kabylda
    Valentin Vassilev-Galindo
    Stefan Chmiela
    Igor Poltavsky
    Alexandre Tkatchenko
    Nature Communications, 14
  • [50] Accurate machine learning force fields via experimental and simulation data fusion
    Sebastien Röcken
    Julija Zavadlav
    npj Computational Materials, 10