Machine Learning-Enabled Development of Accurate Force Fields for Refrigerants

被引:6
|
作者
Wang, Ning [1 ]
Carlozo, Montana N. N. [1 ]
Marin-Rimoldi, Eliseo [1 ]
Befort, Bridgette J. J. [1 ]
Dowling, Alexander W. W. [1 ]
Maginn, Edward J. J. [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
VAPOR-LIQUID-EQUILIBRIUM; MOLECULAR-DYNAMICS; PHASE-EQUILIBRIA; INITIAL CONFIGURATIONS; BINARY-MIXTURES; SIMULATION; OPTIMIZATION; PARAMETERS; FRAMEWORK; POTENTIALS;
D O I
10.1021/acs.jctc.3c00338
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrofluorocarbon (HFC) refrigerants with zero ozone-depletingpotential have replaced chlorofluorocarbons and are now ubiquitous.However, some HFCs have high global warming potential, which has ledto calls by governments to phase out these HFCs. Technologies to recycleand repurpose these HFCs need to be developed. Therefore, thermophysicalproperties of HFCs are needed over a wide range of conditions. Molecularsimulations can help understand and predict the thermophysical propertiesof HFCs. The prediction capability of a molecular simulation is directlytied to the accuracy of the force field. In this work, we appliedand refined a machine learning-based workflow to optimize the Lennard-Jonesparameters of classical HFC force fields for HFC-143a (CF3CH3), HFC-134a (CH2FCF3), R-50 (CH4), R-170 (C2H6), and R-14 (CF4). Our workflow involves liquid density iterations with moleculardynamics simulations and vapor-liquid equilibrium (VLE) iterationswith Gibbs ensemble Monte Carlo simulations. Support vector machineclassifiers and Gaussian process surrogate models save months of simulationtime and can efficiently select optimal parameters from half a milliondistinct parameter sets. Excellent agreement as evidenced by low meanabsolute percent errors (MAPEs) of simulated liquid density (rangingfrom 0.3% to 3.4%), vapor density (ranging from 1.4% to 2.6%), vaporpressure (ranging from 1.3% to 2.8%), and enthalpy of vaporization(ranging from 0.5% to 2.7%) relative to experiments was obtained forthe recommended parameter set of each refrigerant. The performanceof each new parameter set was superior or similar to the best forcefield in the literature.
引用
收藏
页码:4546 / 4558
页数:13
相关论文
共 50 条
  • [21] BIGDML—Towards accurate quantum machine learning force fields for materials
    Huziel E. Sauceda
    Luis E. Gálvez-González
    Stefan Chmiela
    Lauro Oliver Paz-Borbón
    Klaus-Robert Müller
    Alexandre Tkatchenko
    Nature Communications, 13
  • [22] Machine learning-enabled calibration of river routing model parameters
    Zhao, Ying
    Chadha, Mayank
    Olsen, Nicholas
    Yeates, Elissa
    Turner, Josh
    Gugaratshan, Guga
    Qian, Guofeng
    Todd, Michael D.
    Hu, Zhen
    JOURNAL OF HYDROINFORMATICS, 2023, 25 (05) : 1799 - 1821
  • [23] Machine Learning-Enabled Repurposing and Design of Antifouling Polymer Brushes
    Liu, Yonglan
    Zhang, Dong
    Tang, Yijing
    Zhang, Yanxian
    Gong, Xiong
    Xie, Shaowen
    Zheng, Jie
    CHEMICAL ENGINEERING JOURNAL, 2021, 420
  • [24] Machine Learning-enabled Scalable Performance Prediction of Scientific Codes
    Chennupati, Gopinath
    Santhi, Nandakishore
    Romero, Phill
    Eidenbenz, Stephan
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2021, 31 (02):
  • [25] Overview of Machine Learning-Enabled Battery State Estimation Methods
    Zhuge, Yingjian
    Yang, Hengzhao
    Wang, Haoyu
    2023 IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION, APEC, 2023, : 3028 - 3035
  • [26] Machine Learning-Enabled Adaptation of Information Fusion Software Systems
    Fry, Gerald
    Samawi, Tameem
    Lu, Kenny
    Pfeffer, Avi
    Wu, Curt
    Marotta, Steve
    Reposa, Mike
    Chong, Stephen
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [27] Weld quality monitoring via machine learning-enabled approaches
    Raj, Aditya
    Chadha, Utkarsh
    Chadha, Arisha
    Mahadevan, R. Rishikesh
    Sai, Buddhi Rohan
    Chaudhary, Devanshi
    Selvaraj, Senthil Kumaran
    Lokeshkumar, R.
    Das, Sreethul
    Karthikeyan, B.
    Nagalakshmi, R.
    Chandramohan, Vishjit
    Hadidi, Haitham
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2023,
  • [28] Metaverse and Healthcare: Machine Learning-Enabled Digital Twins of Cancer
    Moztarzadeh, Omid
    Jamshidi, Mohammad
    Sargolzaei, Saleh
    Jamshidi, Alireza
    Baghalipour, Nasimeh
    Malekzadeh Moghani, Mona
    Hauer, Lukas
    BIOENGINEERING-BASEL, 2023, 10 (04):
  • [29] Transparency of artificial intelligence/machine learning-enabled medical devices
    Shick, Aubrey A.
    Webber, Christina M.
    Kiarashi, Nooshin
    Weinberg, Jessica P.
    Deoras, Aneesh
    Petrick, Nicholas
    Saha, Anindita
    Diamond, Matthew C.
    NPJ DIGITAL MEDICINE, 2024, 7 (01)
  • [30] Hybrid machine learning-enabled adaptive welding speed control
    Kershaw, Joseph
    Yu, Rui
    Zhang, Yuming
    Wang, Peng
    JOURNAL OF MANUFACTURING PROCESSES, 2021, 71 : 374 - 383