Soliton Shielding of the Focusing Nonlinear Schr?dinger Equation

被引:8
|
作者
Bertola, Marco [1 ,2 ,3 ]
Grava, Tamara [1 ,3 ,4 ]
Orsatti, Giuseppe [1 ,3 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Concordia Univ, 1455 Ave Maisonneuve W 1455 Ave Maisonneuve West, Montreal, PQ H4G 1M8, Canada
[3] INFN, Sez Trieste, Via Valerio 2, I-34127 Trieste, Italy
[4] Univ Bristol, Sch Math, Fry Bldg, Bristol BS8 1UG, England
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
POLYNOMIALS; LIMIT;
D O I
10.1103/PhysRevLett.130.127201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We first consider a deterministic gas of N solitons for the focusing nonlinear Schrodinger (FNLS) equation in the limit N -infinity with a point spectrum chosen to interpolate a given spectral soliton density over a bounded domain of the complex spectral plane. We show that when the domain is a disk and the soliton density is an analytic function, then the corresponding deterministic soliton gas surprisingly yields the one-soliton solution with the point spectrum the center of the disk. We call this effect soliton shielding. We show that this behavior is robust and survives also for a stochastic soliton gas: indeed, when the N-soliton spectrum is chosen as random variables either uniformly distributed on the circle, or chosen according to the statistics of the eigenvalues of the Ginibre random matrix the phenomenon of soliton shielding persists in the limit N -infinity. When the domain is an ellipse, the soliton shielding reduces the spectral data to the soliton density concentrating between the foci of the ellipse. The physical solution is asymptotically steplike oscillatory, namely, the initial profile is a periodic elliptic function in the negative x direction while it vanishes exponentially fast in the opposite direction.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Kink Soliton Solutions in the Logarithmic Schrödinger Equation
    Scott, Tony C.
    Glasser, M. Lawrence
    MATHEMATICS, 2025, 13 (05)
  • [42] Multiple soliton solutions for a quasilinear Schrödinger equation
    Jiayin Liu
    Duchao Liu
    Indian Journal of Pure and Applied Mathematics, 2017, 48 : 75 - 90
  • [43] Characteristics of Rogue Waves on a Soliton Background in the General Coupled Nonlinear Schr?dinger Equation
    王秀彬
    韩波
    Communications in Theoretical Physics, 2019, 71 (02) : 152 - 160
  • [44] Dynamics of spatiotemporal soliton solutions to a generalized nonlinear Schrödinger equation with inhomogeneous coefficients
    Tian, Feng-Xia
    Zhao, Yuan
    He, Jun-Rong
    Xu, Siliu
    RESULTS IN PHYSICS, 2023, 53
  • [45] Optical soliton solutions of perturbed nonlinear Schrödinger equation with parabolic law nonlinearity
    Arshed, Saima
    Akram, Ghazala
    Sadaf, Maasoomah
    Ul Nabi, Andleeb
    Alzaidi, Ahmed S. M.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (01)
  • [46] Dynamical properties and new optical soliton solutions of a generalized nonlinear Schrödinger equation
    Khan, Arshad
    Saifullah, Sayed
    Ahmad, Shabir
    Khan, Meraj Ali
    Rahman, Mati ur
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (11):
  • [47] Some optical soliton solutions with bifurcation analysis of the paraxial nonlinear Schrödinger equation
    S. M. Rayhanul Islam
    S. M. Yaisir Arafat
    Hammad Alotaibi
    Mustafa Inc
    Optical and Quantum Electronics, 2024, 56
  • [48] New exact optical soliton solutions of the derivative nonlinear Schrödinger equation family
    Aydemir, Tugba
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (06)
  • [49] Soliton management in the nonlinear Schrödinger equation model with varying dispersion, nonlinearity, and gain
    V. N. Serkin
    A. Hasegawa
    Journal of Experimental and Theoretical Physics Letters, 2000, 72 : 89 - 92
  • [50] Soliton-like solutions for the nonlinear schrödinger equation with variable quadratic hamiltonians
    Erwin Suazo
    Sergei K. Suslov
    Journal of Russian Laser Research, 2012, 33 : 63 - 83