Soliton management in the nonlinear Schrödinger equation model with varying dispersion, nonlinearity, and gain

被引:0
|
作者
V. N. Serkin
A. Hasegawa
机构
[1] Russian Academy of Sciences,Institute of General Physics
[2] Benemerita Universidad Autonoma de Puebla,undefined
[3] Soliton Communications,undefined
关键词
42.65.Tg; 05.45.Yv; 42.81.Dp;
D O I
暂无
中图分类号
学科分类号
摘要
The novel stable “soliton islands” in a “sea of solitary waves” of the nonlinear Schrödinger equation model with varying dispersion, nonlinearity, and gain or absorption are discovered. Different soliton management regimes are predicted.
引用
收藏
页码:89 / 92
页数:3
相关论文
共 50 条
  • [1] Soliton management in the nonlinear Schrodinger equation model with varying dispersion, nonlinearity, and gain
    Serkin, VN
    Hasegawa, A
    [J]. JETP LETTERS, 2000, 72 (02) : 89 - 92
  • [2] Soliton solution of nonlinear Schrödinger equation with higher order dispersion terms
    Pan Z.
    Zheng K.
    [J]. Applied Mathematics-A Journal of Chinese Universities, 1997, 12 (2) : 151 - 154
  • [3] Optical soliton solutions of perturbed nonlinear Schrödinger equation with parabolic law nonlinearity
    Arshed, Saima
    Akram, Ghazala
    Sadaf, Maasoomah
    Ul Nabi, Andleeb
    Alzaidi, Ahmed S. M.
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (01)
  • [4] Exactly integrable nonlinear Schrodinger equation models with varying dispersion, nonlinearity and gain: Application for soliton dispersion managements
    Serkin, VN
    Hasegawa, A
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2002, 8 (03) : 418 - 431
  • [5] Optical soliton solutions of perturbed nonlinear Schrödinger equation with parabolic law nonlinearity
    Saima Arshed
    Ghazala Akram
    Maasoomah Sadaf
    Andleeb Ul Nabi
    Ahmed S. M. Alzaidi
    [J]. Optical and Quantum Electronics, 2024, 56
  • [6] Soliton solutions for the nonlocal nonlinear Schrödinger equation
    Xin Huang
    Liming Ling
    [J]. The European Physical Journal Plus, 131
  • [7] Soliton Shielding of the Focusing Nonlinear Schr?dinger Equation
    Bertola, Marco
    Grava, Tamara
    Orsatti, Giuseppe
    [J]. PHYSICAL REVIEW LETTERS, 2023, 130 (12)
  • [8] Autoresonance excitation of a soliton of the nonlinear Schrödinger equation
    R. N. Garifullin
    [J]. Proceedings of the Steklov Institute of Mathematics, 2013, 281 : 59 - 63
  • [9] Soliton Resolution for the Derivative Nonlinear Schrödinger Equation
    Robert Jenkins
    Jiaqi Liu
    Peter Perry
    Catherine Sulem
    [J]. Communications in Mathematical Physics, 2018, 363 : 1003 - 1049
  • [10] Characteristics for the soliton based on nonlinear Schrödinger equation
    Wei, Jian-Ping
    Wang, Jun
    Jiang, Xing-Fang
    Tang, Bin
    [J]. Guangzi Xuebao/Acta Photonica Sinica, 2013, 42 (06): : 674 - 678