Soliton Shielding of the Focusing Nonlinear Schr?dinger Equation

被引:8
|
作者
Bertola, Marco [1 ,2 ,3 ]
Grava, Tamara [1 ,3 ,4 ]
Orsatti, Giuseppe [1 ,3 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Concordia Univ, 1455 Ave Maisonneuve W 1455 Ave Maisonneuve West, Montreal, PQ H4G 1M8, Canada
[3] INFN, Sez Trieste, Via Valerio 2, I-34127 Trieste, Italy
[4] Univ Bristol, Sch Math, Fry Bldg, Bristol BS8 1UG, England
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
POLYNOMIALS; LIMIT;
D O I
10.1103/PhysRevLett.130.127201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We first consider a deterministic gas of N solitons for the focusing nonlinear Schrodinger (FNLS) equation in the limit N -infinity with a point spectrum chosen to interpolate a given spectral soliton density over a bounded domain of the complex spectral plane. We show that when the domain is a disk and the soliton density is an analytic function, then the corresponding deterministic soliton gas surprisingly yields the one-soliton solution with the point spectrum the center of the disk. We call this effect soliton shielding. We show that this behavior is robust and survives also for a stochastic soliton gas: indeed, when the N-soliton spectrum is chosen as random variables either uniformly distributed on the circle, or chosen according to the statistics of the eigenvalues of the Ginibre random matrix the phenomenon of soliton shielding persists in the limit N -infinity. When the domain is an ellipse, the soliton shielding reduces the spectral data to the soliton density concentrating between the foci of the ellipse. The physical solution is asymptotically steplike oscillatory, namely, the initial profile is a periodic elliptic function in the negative x direction while it vanishes exponentially fast in the opposite direction.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Direct Approach to Study of Soliton Perturbations of Defocusing Nonlinear Schrdinger Equation
    YU Hui-You YAN Jia-Ren Department of Physics
    Communications in Theoretical Physics, 2004, 42 (12) : 895 - 898
  • [32] On soliton dynamics in nonlinear schrödinger equations
    Zhou Gang
    I. M. Sigal
    Geometric & Functional Analysis GAFA, 2006, 16 : 1377 - 1390
  • [33] Interaction with an obstacle in the 2D focusing nonlinear Schrödinger equation
    Oussama Landoulsi
    Svetlana Roudenko
    Kai Yang
    Advances in Computational Mathematics, 2023, 49
  • [34] Robustness and stability of doubly periodic patterns of the focusing nonlinear Schrödinger equation
    Yin, H. M.
    Li, J. H.
    Zheng, Z.
    Chiang, K. S.
    Chow, K. W.
    CHAOS, 2024, 34 (01)
  • [35] Robin boundary condition and shock problem for the focusing nonlinear Schrödinger equation
    Spyridon Kamvissis
    Dmitry Shepelsky
    Lech Zielinski
    Journal of Nonlinear Mathematical Physics, 2015, 22 : 448 - 473
  • [36] Umbilic Singularities of Semiclassical Approximations to Solutions of the Focusing Nonlinear Schrödinger Equation
    Suleimanov, B. I.
    Shavlukov, A. M.
    MATHEMATICAL NOTES, 2024, 116 (5-6) : 1361 - 1372
  • [37] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [38] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [39] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [40] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70