Soliton Shielding of the Focusing Nonlinear Schr?dinger Equation

被引:8
|
作者
Bertola, Marco [1 ,2 ,3 ]
Grava, Tamara [1 ,3 ,4 ]
Orsatti, Giuseppe [1 ,3 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Concordia Univ, 1455 Ave Maisonneuve W 1455 Ave Maisonneuve West, Montreal, PQ H4G 1M8, Canada
[3] INFN, Sez Trieste, Via Valerio 2, I-34127 Trieste, Italy
[4] Univ Bristol, Sch Math, Fry Bldg, Bristol BS8 1UG, England
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
POLYNOMIALS; LIMIT;
D O I
10.1103/PhysRevLett.130.127201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We first consider a deterministic gas of N solitons for the focusing nonlinear Schrodinger (FNLS) equation in the limit N -infinity with a point spectrum chosen to interpolate a given spectral soliton density over a bounded domain of the complex spectral plane. We show that when the domain is a disk and the soliton density is an analytic function, then the corresponding deterministic soliton gas surprisingly yields the one-soliton solution with the point spectrum the center of the disk. We call this effect soliton shielding. We show that this behavior is robust and survives also for a stochastic soliton gas: indeed, when the N-soliton spectrum is chosen as random variables either uniformly distributed on the circle, or chosen according to the statistics of the eigenvalues of the Ginibre random matrix the phenomenon of soliton shielding persists in the limit N -infinity. When the domain is an ellipse, the soliton shielding reduces the spectral data to the soliton density concentrating between the foci of the ellipse. The physical solution is asymptotically steplike oscillatory, namely, the initial profile is a periodic elliptic function in the negative x direction while it vanishes exponentially fast in the opposite direction.
引用
收藏
页数:6
相关论文
共 50 条