Scattering for the focusing energy-subcritical nonlinear Schrödinger equation

被引:0
|
作者
DaoYuan Fang
Jian Xie
Thierry Cazenave
机构
[1] Zhejiang University,Department of Mathematics
[2] Hangzhou Normal University,Department of Mathematics
[3] Université Pierre et Marie Curie & CNRS,Laboratoire Jacques
来源
Science China Mathematics | 2011年 / 54卷
关键词
nonlinear Schrödinger equation; scattering; mass-supercritical and energy-subcritical; 35Q55; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
For the 3D focusing cubic nonlinear Schrödinger equation, scattering of H1 solutions inside the (scale invariant) potential well was established by Holmer and Roudenko (radial case) and Duyckaerts et al. (general case) in 2008. In this paper, we extend this result to arbitrary space dimensions and focusing, mass-supercritical and energy-subcritical power nonlinearities, by adapting the method of Duyckaerts et al.
引用
收藏
页码:2037 / 2062
页数:25
相关论文
共 50 条
  • [1] Scattering for the focusing energy-subcritical nonlinear Schrdinger equation
    CAZENAVE Thierry
    Science China(Mathematics), 2011, 54 (10) : 2037 - 2062
  • [2] Scattering for the focusing energy-subcritical nonlinear Schrodinger equation
    Fang DaoYuan
    Xie Jian
    Cazenave Thierry
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (10) : 2037 - 2062
  • [3] The low energy scattering for nonlinear Schrödinger equation
    Conghui Fang
    Zheng Han
    Revista Matemática Complutense, 2023, 36 : 125 - 140
  • [4] Large Global Solutions for Nonlinear Schrödinger Equations II, Mass-Supercritical, Energy-Subcritical Cases
    Marius Beceanu
    Qingquan Deng
    Avy Soffer
    Yifei Wu
    Communications in Mathematical Physics, 2021, 382 : 173 - 237
  • [5] Energy Scattering for the Unsteady Damped Nonlinear Schrödinger Equation
    Hamouda, Makram
    Majdoub, Mohamed
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2025, 22 (02)
  • [6] Soliton Shielding of the Focusing Nonlinear Schr?dinger Equation
    Bertola, Marco
    Grava, Tamara
    Orsatti, Giuseppe
    PHYSICAL REVIEW LETTERS, 2023, 130 (12)
  • [7] On the semiclassical limit of the focusing nonlinear Schrödinger equation
    School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, United States
    不详
    Phys Lett Sect A Gen At Solid State Phys, 1-2 (75-86):
  • [8] Energy scattering for a class of the defocusing inhomogeneous nonlinear Schrödinger equation
    Van Duong Dinh
    Journal of Evolution Equations, 2019, 19 : 411 - 434
  • [9] Blowup and scattering criteria above the threshold for the focusing inhomogeneous nonlinear Schrödinger equation
    Luccas Campos
    Mykael Cardoso
    Nonlinear Differential Equations and Applications NoDEA, 2021, 28
  • [10] Linear Instability of Breathers for the Focusing Nonlinear Schrödinger Equation
    Mariana Haragus
    Dmitry E. Pelinovsky
    Journal of Nonlinear Science, 2022, 32