Scattering for the focusing energy-subcritical nonlinear Schrödinger equation

被引:0
|
作者
DaoYuan Fang
Jian Xie
Thierry Cazenave
机构
[1] Zhejiang University,Department of Mathematics
[2] Hangzhou Normal University,Department of Mathematics
[3] Université Pierre et Marie Curie & CNRS,Laboratoire Jacques
来源
Science China Mathematics | 2011年 / 54卷
关键词
nonlinear Schrödinger equation; scattering; mass-supercritical and energy-subcritical; 35Q55; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
For the 3D focusing cubic nonlinear Schrödinger equation, scattering of H1 solutions inside the (scale invariant) potential well was established by Holmer and Roudenko (radial case) and Duyckaerts et al. (general case) in 2008. In this paper, we extend this result to arbitrary space dimensions and focusing, mass-supercritical and energy-subcritical power nonlinearities, by adapting the method of Duyckaerts et al.
引用
收藏
页码:2037 / 2062
页数:25
相关论文
共 50 条
  • [41] Inverse scattering transform for the integrable fractional derivative nonlinear Schrödinger equation
    An, Ling
    Ling, Liming
    Zhang, Xiaoen
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 458
  • [42] Some regularity properties of scattering data for the derivative nonlinear Schrödinger equation
    Weng, Weifang
    Yan, Zhenya
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2025, 77 (05)
  • [43] Numerical solution of the nonlinear Schrödinger equation, starting from the scattering data
    A. Aricò
    G. Rodriguez
    S. Seatzu
    Calcolo, 2011, 48 : 75 - 88
  • [44] Neural networks for computing and denoising the continuous nonlinear Fourier spectrum in focusing nonlinear Schrödinger equation
    Egor V. Sedov
    Pedro J. Freire
    Vladimir V. Seredin
    Vladyslav A. Kolbasin
    Morteza Kamalian-Kopae
    Igor S. Chekhovskoy
    Sergei K. Turitsyn
    Jaroslaw E. Prilepsky
    Scientific Reports, 11
  • [45] A NONLINEAR SCHR?DINGER EQUATION WITH COULOMB POTENTIAL
    苗长兴
    张军勇
    郑继强
    Acta Mathematica Scientia, 2022, 42 (06) : 2230 - 2256
  • [46] A nonlinear Schrödinger equation with Coulomb potential
    Changxing Miao
    Junyong Zhang
    Jiqiang Zheng
    Acta Mathematica Scientia, 2022, 42 : 2230 - 2256
  • [47] Stationary solutions for the nonlinear Schrödinger equation
    Ferrario, Benedetta
    Zanella, Margherita
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025,
  • [48] KAM Theorem for the Nonlinear Schrödinger Equation
    Benoît Grébert
    Thomas Kappeler
    Journal of Nonlinear Mathematical Physics, 2001, 8 (Suppl 1) : 133 - 138
  • [49] Semiclassical Solutions of the Nonlinear Schrödinger Equation
    A. V. Shapovalov
    A. Yu. Trifonov
    Journal of Nonlinear Mathematical Physics, 1999, 6 : 127 - 138
  • [50] Stroboscopic Averaging for the Nonlinear Schrödinger Equation
    F. Castella
    Ph. Chartier
    F. Méhats
    A. Murua
    Foundations of Computational Mathematics, 2015, 15 : 519 - 559