Multiple soliton solutions for a quasilinear Schrödinger equation

被引:0
|
作者
Jiayin Liu
Duchao Liu
机构
[1] Beifang University of Nationalities,School of Mathematics and Information Science
[2] Lanzhou University,School of Mathematics and Statistics
关键词
Quasilinear Schrödinger equation; soliton solution; Morse theory; symmetry mountain pass theorem; truncation arguments;
D O I
暂无
中图分类号
学科分类号
摘要
Using Morse theory, truncation arguments and an abstract critical point theorem, we obtain the existence of at least three or infinitely many nontrivial solutions for the following quasilinear Schrödinger equation in a bounded smooth domain (0.1){−Δpu−p2p−1uΔp(u2)=f(x,u)inΩu=0on∂Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\begin{array}{*{20}{c}} { - {\Delta _p}u - \frac{p}{{{2^{p - 1}}}}u{\Delta _p}\left( {{u^2}} \right) = f\left( {x,u} \right)\;in\;\Omega } \\ {u = 0\;on\;\partial \Omega .} \end{array}} \right.$$\end{document} Our main results can be viewed as a partial extension of the results of Zhang et al. in [28] and Zhou and Wu in [29] concerning the the existence of solutions to (0.1) in the case of p = 2 and a recent result of Liu and Zhao in [21] two solutions are obtained for problem 0.1.
引用
收藏
页码:75 / 90
页数:15
相关论文
共 50 条
  • [1] Soliton solutions for a quasilinear Schrödinger equation via Morse theory
    DUCHAO LIU
    PEIHAO ZHAO
    Proceedings - Mathematical Sciences, 2015, 125 : 307 - 321
  • [2] Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in ℝN
    Caisheng Chen
    Hongxue Song
    Applications of Mathematics, 2016, 61 : 317 - 337
  • [3] On the existence of soliton solutions to quasilinear Schrödinger equations
    Markus Poppenberg
    Klaus Schmitt
    Zhi-Qiang Wang
    Calculus of Variations and Partial Differential Equations, 2002, 14 : 329 - 344
  • [4] Ground State Solutions for a Quasilinear Schrödinger Equation
    Jian Zhang
    Xiaoyan Lin
    Xianhua Tang
    Mediterranean Journal of Mathematics, 2017, 14
  • [5] Nonexistence of stable solutions for quasilinear Schrödinger equation
    Lijuan Chen
    Caisheng Chen
    Hongwei Yang
    Hongxue Song
    Boundary Value Problems, 2018
  • [6] Soliton solutions for the nonlocal nonlinear Schrödinger equation
    Xin Huang
    Liming Ling
    The European Physical Journal Plus, 131
  • [7] Kink Soliton Solutions in the Logarithmic Schrödinger Equation
    Scott, Tony C.
    Glasser, M. Lawrence
    MATHEMATICS, 2025, 13 (05)
  • [8] Multiple solutions for a quasilinear Schrödinger–Poisson system
    Jing Zhang
    Boundary Value Problems, 2021
  • [9] Positive Solutions for a Quasilinear Schrödinger Equation with Critical Growth
    Giovany M. Figueiredo
    Marcelo F. Furtado
    Journal of Dynamics and Differential Equations, 2012, 24 : 13 - 28
  • [10] Existence of Solutions for a Quasilinear Schr?dinger Equation with Potential Vanishing
    Yan-fang XUE
    Jian-xin HAN
    Xin-cai ZHU
    ActaMathematicaeApplicataeSinica, 2023, 39 (03) : 696 - 706