Multiple soliton solutions for a quasilinear Schrödinger equation

被引:0
|
作者
Jiayin Liu
Duchao Liu
机构
[1] Beifang University of Nationalities,School of Mathematics and Information Science
[2] Lanzhou University,School of Mathematics and Statistics
关键词
Quasilinear Schrödinger equation; soliton solution; Morse theory; symmetry mountain pass theorem; truncation arguments;
D O I
暂无
中图分类号
学科分类号
摘要
Using Morse theory, truncation arguments and an abstract critical point theorem, we obtain the existence of at least three or infinitely many nontrivial solutions for the following quasilinear Schrödinger equation in a bounded smooth domain (0.1){−Δpu−p2p−1uΔp(u2)=f(x,u)inΩu=0on∂Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\begin{array}{*{20}{c}} { - {\Delta _p}u - \frac{p}{{{2^{p - 1}}}}u{\Delta _p}\left( {{u^2}} \right) = f\left( {x,u} \right)\;in\;\Omega } \\ {u = 0\;on\;\partial \Omega .} \end{array}} \right.$$\end{document} Our main results can be viewed as a partial extension of the results of Zhang et al. in [28] and Zhou and Wu in [29] concerning the the existence of solutions to (0.1) in the case of p = 2 and a recent result of Liu and Zhao in [21] two solutions are obtained for problem 0.1.
引用
收藏
页码:75 / 90
页数:15
相关论文
共 50 条
  • [31] Existence and asymptotic properties of positive solutions for a general quasilinear Schrödinger equation
    Xiang Zhang
    Yimin Zhang
    Boundary Value Problems, 2019
  • [32] Infinitely many solutions of degenerate quasilinear Schrödinger equation with general potentials
    Yan Meng
    Xianjiu Huang
    Jianhua Chen
    Boundary Value Problems, 2021
  • [33] Existence and properties of soliton solution for the quasilinear Schrödinger system
    Zhang, Xue
    Zhang, Jing
    OPEN MATHEMATICS, 2024, 22 (01):
  • [34] N-Soliton Solutions of General Nonlinear Schrdinger Equation with Derivative
    ZHAI Wen CHEN Deng-Yuan Department of Mathematics
    Communications in Theoretical Physics, 2008, 49 (05) : 1101 - 1104
  • [35] A new approach to exact optical soliton solutions for the nonlinear Schrödinger equation
    V. F. Morales-Delgado
    J. F. Gómez-Aguilar
    Dumitru Baleanu
    The European Physical Journal Plus, 133
  • [36] Soliton solutions of the space–time fractional nonlocal nonlinear Schrödinger equation
    Zhang L.
    Liu H.
    Optik, 2023, 289
  • [37] New optical soliton solutions for the variable coefficients nonlinear Schrödinger equation
    Yongyi Gu
    Najva Aminakbari
    Optical and Quantum Electronics, 2022, 54
  • [38] The Existence of Arbitrary Multiple Nodal Solutions for a Class of Quasilinear Schrödinger Equations
    Wang, Kun
    Huang, Chen
    Jia, Gao
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (04)
  • [39] Multiple solutions for quasilinear Schrödinger equations involving local nonlinearity term
    Chunfang Chen
    Wenjie Zhu
    Proceedings - Mathematical Sciences, 2022, 132
  • [40] Multiple normalized solutions for a Sobolev critical Schrödinger equation
    Louis Jeanjean
    Thanh Trung Le
    Mathematische Annalen, 2022, 384 : 101 - 134