Infinitely many solutions of degenerate quasilinear Schrödinger equation with general potentials

被引:0
|
作者
Yan Meng
Xianjiu Huang
Jianhua Chen
机构
[1] Nanchang University,Department of Mathematics
来源
关键词
Schrödinger equation; Superlinear condition; Infinitely many solutions; 35J60; 35J20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the following quasilinear Schrödinger equation: −div(a(x,∇u))+V(x)|x|−αp∗|u|p−2u=K(x)|x|−αp∗f(x,u)in RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ -\operatorname{div}\bigl(a(x,\nabla u)\bigr)+V(x) \vert x \vert ^{-\alpha p^{*}} \vert u \vert ^{p-2}u=K(x) \vert x \vert ^{- \alpha p^{*}}f(x,u) \quad \text{in } \mathbb{R}^{N}, $$\end{document} where N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N\geq 3$\end{document}, 1<p<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1< p< N$\end{document}, −∞<α<N−pp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-\infty <\alpha <\frac{N-p}{p}$\end{document}, α≤e≤α+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \leq e\leq \alpha +1$\end{document}, d=1+α−e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d=1+\alpha -e$\end{document}, p∗:=p∗(α,e)=NpN−dp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p^{*}:=p^{*}(\alpha ,e)=\frac{Np}{N-dp}$\end{document} (critical Hardy–Sobolev exponent), V and K are nonnegative potentials, the function a satisfies suitable assumptions, and f is superlinear, which is weaker than the Ambrosetti–Rabinowitz-type condition. By using variational methods we obtain that the quasilinear Schrödinger equation has infinitely many nontrivial solutions.
引用
收藏
相关论文
共 50 条
  • [1] Infinitely many solutions for quasilinear Schrödinger equation with general superlinear nonlinearity
    Jiameng Li
    Huiwen Chen
    Zhimin He
    Zigen Ouyang
    Boundary Value Problems, 2023
  • [2] Infinitely many solutions of degenerate quasilinear Schrodinger equation with general potentials
    Meng, Yan
    Huang, Xianjiu
    Chen, Jianhua
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [3] Infinitely many solutions for a nonlinear Schrödinger equation with general nonlinearity
    Yohei Sato
    Masataka Shibata
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [4] Infinitely many solutions for quasilinear Schrödinger equation with concave-convex nonlinearities
    Chen, Lijuan
    Chen, Caisheng
    Chen, Qiang
    Wei, Yunfeng
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01)
  • [5] Infinitely many solutions for quasilinear Schrödinger equation with concave-convex nonlinearities
    Lijuan Chen
    Caisheng Chen
    Qiang Chen
    Yunfeng Wei
    Boundary Value Problems, 2024
  • [6] Infinitely many solutions of strongly degenerate Schrödinger elliptic equations with vanishing potentials
    My, Bui Kim
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (03)
  • [7] Infinitely many solutions for quasilinear Schrödinger systems with finite and sign-changing potentials
    Yuxia Guo
    Jianjun Nie
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [8] Infinitely many weak solutions for a fractional Schrödinger equation
    Wei Dong
    Jiafa Xu
    Zhongli Wei
    Boundary Value Problems, 2014
  • [9] Infinitely Many Solutions for Sublinear Schrödinger–Kirchhoff-Type Equations With General Potentials
    Lian Duan
    Lihong Huang
    Results in Mathematics, 2014, 66 : 181 - 197
  • [10] Infinitely many sign-changing solutions for a Schrö dinger equation
    Aixia Qian
    Advances in Difference Equations, 2011