Multiple soliton solutions for a quasilinear Schrödinger equation

被引:0
|
作者
Jiayin Liu
Duchao Liu
机构
[1] Beifang University of Nationalities,School of Mathematics and Information Science
[2] Lanzhou University,School of Mathematics and Statistics
关键词
Quasilinear Schrödinger equation; soliton solution; Morse theory; symmetry mountain pass theorem; truncation arguments;
D O I
暂无
中图分类号
学科分类号
摘要
Using Morse theory, truncation arguments and an abstract critical point theorem, we obtain the existence of at least three or infinitely many nontrivial solutions for the following quasilinear Schrödinger equation in a bounded smooth domain (0.1){−Δpu−p2p−1uΔp(u2)=f(x,u)inΩu=0on∂Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\begin{array}{*{20}{c}} { - {\Delta _p}u - \frac{p}{{{2^{p - 1}}}}u{\Delta _p}\left( {{u^2}} \right) = f\left( {x,u} \right)\;in\;\Omega } \\ {u = 0\;on\;\partial \Omega .} \end{array}} \right.$$\end{document} Our main results can be viewed as a partial extension of the results of Zhang et al. in [28] and Zhou and Wu in [29] concerning the the existence of solutions to (0.1) in the case of p = 2 and a recent result of Liu and Zhao in [21] two solutions are obtained for problem 0.1.
引用
收藏
页码:75 / 90
页数:15
相关论文
共 50 条
  • [21] Pure soliton solutions of the nonlocal Kundu–nonlinear Schrödinger equation
    Xiu-Bin Wang
    Bo Han
    Theoretical and Mathematical Physics, 2021, 206 : 40 - 67
  • [22] Quasilinear Schrödinger equations with linear growth: Existence and asymptotic behavior of soliton solutions
    Jing, Yongtao
    Liu, Haidong
    Zhao, Leiga
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (04)
  • [23] Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation
    汪保
    张钊
    李彪
    Chinese Physics Letters, 2020, (03) : 13 - 16
  • [24] Families of nonsingular soliton solutions of a nonlocal Schrödinger–Boussinesq equation
    Ying Shi
    Yongshuai Zhang
    Shuwei Xu
    Nonlinear Dynamics, 2018, 94 : 2327 - 2334
  • [25] Multiple positive solutions for a nonlinear Schrödinger equation
    Th. BartschRID="*"
    Z.-Q. WangRID="*"ID="*"Research supported by NATO grant CRG 970179 and DFG grant Gi 30/68-1
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2000, 51 : 366 - 384
  • [26] The multi-soliton and multiple-poles soliton solutions for the six-order nonlinear Schrödinger equation
    Mengtao Xu
    Nan Liu
    Chunxiao Guo
    Nonlinear Dynamics, 2021, 105 : 1741 - 1751
  • [27] Global multiplicity of solutions to a defocusing quasilinear Schrödinger equation with the singular term
    Siyu Chen
    Carlos Alberto Santos
    Minbo Yang
    Jiazheng Zhou
    Science China Mathematics, 2023, 66 : 1789 - 1812
  • [28] Infinitely many solutions for quasilinear Schrödinger equation with general superlinear nonlinearity
    Jiameng Li
    Huiwen Chen
    Zhimin He
    Zigen Ouyang
    Boundary Value Problems, 2023
  • [29] Global multiplicity of solutions to a defocusing quasilinear Schr?dinger equation with the singular term
    Siyu Chen
    Carlos Alberto Santos
    Minbo Yang
    Jiazheng Zhou
    ScienceChina(Mathematics), 2023, 66 (08) : 1789 - 1812
  • [30] Asymptotical behavior of ground state solutions for critical quasilinear Schrödinger equation
    Yongpeng Chen
    Yuxia Guo
    Zhongwei Tang
    Frontiers of Mathematics in China, 2020, 15 : 21 - 46