Multiple soliton solutions for a quasilinear Schrödinger equation

被引:0
|
作者
Jiayin Liu
Duchao Liu
机构
[1] Beifang University of Nationalities,School of Mathematics and Information Science
[2] Lanzhou University,School of Mathematics and Statistics
关键词
Quasilinear Schrödinger equation; soliton solution; Morse theory; symmetry mountain pass theorem; truncation arguments;
D O I
暂无
中图分类号
学科分类号
摘要
Using Morse theory, truncation arguments and an abstract critical point theorem, we obtain the existence of at least three or infinitely many nontrivial solutions for the following quasilinear Schrödinger equation in a bounded smooth domain (0.1){−Δpu−p2p−1uΔp(u2)=f(x,u)inΩu=0on∂Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\begin{array}{*{20}{c}} { - {\Delta _p}u - \frac{p}{{{2^{p - 1}}}}u{\Delta _p}\left( {{u^2}} \right) = f\left( {x,u} \right)\;in\;\Omega } \\ {u = 0\;on\;\partial \Omega .} \end{array}} \right.$$\end{document} Our main results can be viewed as a partial extension of the results of Zhang et al. in [28] and Zhou and Wu in [29] concerning the the existence of solutions to (0.1) in the case of p = 2 and a recent result of Liu and Zhao in [21] two solutions are obtained for problem 0.1.
引用
收藏
页码:75 / 90
页数:15
相关论文
共 50 条
  • [41] A note on multiple positive solutions for a nonlinear schrödinger equation
    Haitao Y.
    Applied Mathematics-A Journal of Chinese Universities, 2002, 17 (1) : 57 - 63
  • [42] Infinitely many solutions for quasilinear Schrödinger equation with concave-convex nonlinearities
    Lijuan Chen
    Caisheng Chen
    Qiang Chen
    Yunfeng Wei
    Boundary Value Problems, 2024
  • [43] Infinitely many solutions for quasilinear Schrödinger equation with concave-convex nonlinearities
    Chen, Lijuan
    Chen, Caisheng
    Chen, Qiang
    Wei, Yunfeng
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01)
  • [44] Solutions for quasilinear Schrödinger systems with critical exponents
    Yuxia Guo
    Bo Li
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 517 - 546
  • [45] On the existence of nontrivial solutions for quasilinear Schrödinger systems
    Guofa Li
    Boundary Value Problems, 2022
  • [46] Bounded solutions for quasilinear modified Schrödinger equations
    Anna Maria Candela
    Addolorata Salvatore
    Caterina Sportelli
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [47] Iterative Solutions of the Schrödinger Equation
    George Rawitscher
    Few-Body Systems, 2014, 55 : 821 - 824
  • [48] Separability of Solutions to a Schr?dinger Equation
    王文华
    曹怀信
    郭志华
    余保民
    Communications in Theoretical Physics, 2014, 62 (08) : 205 - 209
  • [49] Soliton Shielding of the Focusing Nonlinear Schr?dinger Equation
    Bertola, Marco
    Grava, Tamara
    Orsatti, Giuseppe
    PHYSICAL REVIEW LETTERS, 2023, 130 (12)
  • [50] Autoresonance excitation of a soliton of the nonlinear Schrödinger equation
    R. N. Garifullin
    Proceedings of the Steklov Institute of Mathematics, 2013, 281 : 59 - 63