Geodesics in first-passage percolation cross any pattern

被引:0
|
作者
Jacquet, Antonin [1 ]
机构
[1] Univ Tours, Inst Denis Poisson, UMR CNRS 7013, Tours, France
来源
关键词
first-passage percolation; geodesics;
D O I
10.1214/23-EJP1058
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In first-passage percolation, one places nonnegative i.i.d. random variables (T(epsilon)) on the edges of Zd. A geodesic is an optimal path for the passage times T(epsilon). Consider a local property of the time environment. We call it a pattern. We investigate the number of times a geodesic crosses a translation of this pattern. Under mild conditions, we show that, apart from an event with exponentially small probability, this number is linear in the distance between the endpoints.
引用
收藏
页数:64
相关论文
共 50 条
  • [21] Euclidean models of first-passage percolation
    C. Douglas Howard
    Charles M. Newman
    Probability Theory and Related Fields, 1997, 108 : 153 - 170
  • [22] Euclidean models of first-passage percolation
    Howard, CD
    Newman, CM
    PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (02) : 153 - 170
  • [23] Subdiffusive concentration in first-passage percolation
    Damron, Michael
    Hanson, Jack
    Sosoe, Philippe
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 27
  • [24] First-passage percolation on the random graph
    van der Hofstad, R
    Hooghiemstra, G
    Van Mieghem, P
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2001, 15 (02) : 225 - 237
  • [25] THE SIZE OF THE BOUNDARY IN FIRST-PASSAGE PERCOLATION
    Damron, Michael
    Hanson, Jack
    Lam, Wai-Kit
    ANNALS OF APPLIED PROBABILITY, 2018, 28 (05): : 3184 - 3214
  • [26] Large deviations in first-passage percolation
    Chow, Y
    Zhang, Y
    ANNALS OF APPLIED PROBABILITY, 2003, 13 (04): : 1601 - 1614
  • [27] SUPERCRITICAL BEHAVIORS IN FIRST-PASSAGE PERCOLATION
    ZHANG, Y
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1995, 59 (02) : 251 - 266
  • [28] A note on anisotropic first-passage percolation
    Takei, Masato
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2006, 46 (04): : 903 - 912
  • [29] Geodesics Toward Corners in First Passage Percolation
    Kenneth S. Alexander
    Quentin Berger
    Journal of Statistical Physics, 2018, 172 : 1029 - 1056
  • [30] Geodesics Toward Corners in First Passage Percolation
    Alexander, Kenneth S.
    Berger, Quentin
    JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (04) : 1029 - 1056