Geodesics in first-passage percolation cross any pattern

被引:0
|
作者
Jacquet, Antonin [1 ]
机构
[1] Univ Tours, Inst Denis Poisson, UMR CNRS 7013, Tours, France
来源
关键词
first-passage percolation; geodesics;
D O I
10.1214/23-EJP1058
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In first-passage percolation, one places nonnegative i.i.d. random variables (T(epsilon)) on the edges of Zd. A geodesic is an optimal path for the passage times T(epsilon). Consider a local property of the time environment. We call it a pattern. We investigate the number of times a geodesic crosses a translation of this pattern. Under mild conditions, we show that, apart from an event with exponentially small probability, this number is linear in the distance between the endpoints.
引用
收藏
页数:64
相关论文
共 50 条
  • [41] Entropy reduction in Euclidean first-passage percolation
    Damron, Michael
    Wang, Xuan
    ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [42] Local Neighbourhoods for First-Passage Percolation on the Configuration Model
    Dereich, Steffen
    Ortgiese, Marcel
    JOURNAL OF STATISTICAL PHYSICS, 2018, 173 (3-4) : 485 - 501
  • [43] Nonhomogeneous Euclidean first-passage percolation and distance learning
    Groisman, Pablo
    Jonckheere, Matthieu
    Sapienza, Facundo
    BERNOULLI, 2022, 28 (01) : 255 - 276
  • [44] Differentiability at the edge of the percolation cone and related results in first-passage percolation
    Auffinger, Antonio
    Damron, Michael
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 156 (1-2) : 193 - 227
  • [45] Differentiability at the edge of the percolation cone and related results in first-passage percolation
    Antonio Auffinger
    Michael Damron
    Probability Theory and Related Fields, 2013, 156 : 193 - 227
  • [46] Differentiability and monotonicity of expected passage time in Euclidean first-passage percolation
    Howard, CD
    JOURNAL OF APPLIED PROBABILITY, 2001, 38 (04) : 815 - 827
  • [47] Transitions for exceptional times in dynamical first-passage percolation
    Damron, Michael
    Hanson, Jack
    Harper, David
    Lam, Wai-Kit
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 39 (03): : 499 - 502
  • [48] FIRST-PASSAGE PERCOLATION ON SQUARE LATTICE .1.
    SMYTHE, RT
    WIERMAN, JC
    ADVANCES IN APPLIED PROBABILITY, 1977, 9 (01) : 38 - 54
  • [49] STRICT CONVEXITY OF THE LIMIT SHAPE IN FIRST-PASSAGE PERCOLATION
    Lalley, Steven P.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2003, 8 : 135 - 141
  • [50] Comparison of limit shapes for Bernoulli first-passage percolation
    Kubota, Naoki
    Takei, Masato
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2022, 14 (01):