?-Conformally Flat LP-Kenmotsu Manifolds and Ricci-Yamabe Solitons

被引:8
|
作者
Haseeb, Abdul [1 ]
Bilal, Mohd [2 ]
Chaubey, Sudhakar K. [3 ]
Ahmadini, Abdullah Ali H. [1 ]
机构
[1] Jazan Univ, Coll Sci, Dept Math, Jazan 45142, Saudi Arabia
[2] Umm Al Qura Univ, Fac Appl Sci, Dept Math Sci, Mecca 21955, Saudi Arabia
[3] Univ Technol & Appl Sci, Dept IT, Sect Math, Shinas 324, Oman
关键词
Lorentzian manifolds; Ricci-Yamabe solitons; gradient Ricci-Yamabe solitons; perfect fluid spacetime; Einstein manifolds; 3-MANIFOLDS;
D O I
10.3390/math11010212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we characterize m-dimensional zeta-conformally flat LP-Kenmotsu manifolds (briefly, (LPK)(m)) equipped with the Ricci-Yamabe solitons (RYS) and gradient Ricci-Yamabe solitons (GRYS). It is proven that the scalar curvature r of an (LPK)(m) admitting an RYS satisfies the Poisson equation delta r=4(m-1)/delta{beta(m-1)+rho}+2(m-3)r - 4m(m-1)(m-2), where rho,delta(&NOTEQUexpressionL; 0) is an element of R. In this sequel, the condition for which the scalar curvature of an (LPK)(m) admitting an RYS holds the Laplace equation is established. We also give an affirmative answer for the existence of a GRYS on an (LPK)(m). Finally, a non-trivial example of an LP-Kenmotsu manifold (LPK) of dimension four is constructed to verify some of our results.
引用
收藏
页数:14
相关论文
共 50 条