?-Conformally Flat LP-Kenmotsu Manifolds and Ricci-Yamabe Solitons

被引:8
|
作者
Haseeb, Abdul [1 ]
Bilal, Mohd [2 ]
Chaubey, Sudhakar K. [3 ]
Ahmadini, Abdullah Ali H. [1 ]
机构
[1] Jazan Univ, Coll Sci, Dept Math, Jazan 45142, Saudi Arabia
[2] Umm Al Qura Univ, Fac Appl Sci, Dept Math Sci, Mecca 21955, Saudi Arabia
[3] Univ Technol & Appl Sci, Dept IT, Sect Math, Shinas 324, Oman
关键词
Lorentzian manifolds; Ricci-Yamabe solitons; gradient Ricci-Yamabe solitons; perfect fluid spacetime; Einstein manifolds; 3-MANIFOLDS;
D O I
10.3390/math11010212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we characterize m-dimensional zeta-conformally flat LP-Kenmotsu manifolds (briefly, (LPK)(m)) equipped with the Ricci-Yamabe solitons (RYS) and gradient Ricci-Yamabe solitons (GRYS). It is proven that the scalar curvature r of an (LPK)(m) admitting an RYS satisfies the Poisson equation delta r=4(m-1)/delta{beta(m-1)+rho}+2(m-3)r - 4m(m-1)(m-2), where rho,delta(&NOTEQUexpressionL; 0) is an element of R. In this sequel, the condition for which the scalar curvature of an (LPK)(m) admitting an RYS holds the Laplace equation is established. We also give an affirmative answer for the existence of a GRYS on an (LPK)(m). Finally, a non-trivial example of an LP-Kenmotsu manifold (LPK) of dimension four is constructed to verify some of our results.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] RICCI SOLITONS IN KENMOTSU MANIFOLDS
    Nagaraja, H. G.
    Premalatha, C. R.
    JOURNAL OF MATHEMATICAL ANALYSIS, 2012, 3 (02): : 18 - 24
  • [32] Ricci Solitons and Gradient Ricci Solitons in a Kenmotsu Manifolds
    De, Uday Chand
    Matsuyama, Yoshio
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (05) : 691 - 697
  • [33] THE YAMABE FLOW ON LOCALLY CONFORMALLY FLAT MANIFOLDS WITH POSITIVE RICCI CURVATURE
    CHOW, B
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (08) : 1003 - 1014
  • [34] The Geometry of δ-Ricci-Yamabe Almost Solitons on Para- contact Metric Manifolds
    Mondal, Somnath
    Dey, Santu
    Suh, Young jin
    Bhattacharyya, Arindam
    KYUNGPOOK MATHEMATICAL JOURNAL, 2023, 63 (04): : 623 - 638
  • [35] ?-Ricci-Yamabe Solitons along Riemannian Submersions
    Siddiqi, Mohd Danish
    Mofarreh, Fatemah
    Akyol, Mehmet Akif
    Hakami, Ali H.
    Perez, Juan De Dios
    AXIOMS, 2023, 12 (08)
  • [36] Ricci-Yamabe Solitons in f (R)-gravity
    De, Krishnendu
    De, Uday Chand
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 334 - 342
  • [37] Characterizations of GRW spacetimes admitting Ricci-Yamabe solitons
    Sardar, Arpan
    De, Uday Chand
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (10)
  • [38] Existence and Physical Properties of Gradient Ricci-Yamabe Solitons
    Guler, Sinem
    Karaca, Fatma
    GRAVITATION & COSMOLOGY, 2025, 31 (01): : 28 - 36
  • [39] Estimation of Almost Ricci-Yamabe Solitons on Static Spacetimes
    Siddiqi, Mohd Danish
    De, Uday Chand
    Deshmukh, Sharief
    FILOMAT, 2022, 36 (02) : 397 - 407
  • [40] *-RICCI SOLITONS AND GRADIENT ALMOST *-RICCI SOLITONS ON KENMOTSU MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1447 - 1458