Existence and Physical Properties of Gradient Ricci-Yamabe Solitons

被引:0
|
作者
Guler, Sinem [1 ]
Karaca, Fatma [2 ,3 ]
机构
[1] Istanbul Sabahattin Zaim Univ, Dept Ind Engn, TR-34303 Istanbul, Turkiye
[2] Istanbul Beykent Univ, Dept Math, TR-34550 Istanbul, Turkiye
[3] Yildiz Tech Univ, Dept Math, TR-34220 Istanbul, Turkiye
来源
GRAVITATION & COSMOLOGY | 2025年 / 31卷 / 01期
关键词
D O I
10.1134/S0202289324700464
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We first prove the existence of the gradient Ricci-Yamabe soliton (briefly GRYS) by constructing an explicit example endowed with the Robertson-Walker metric. Then we focus on the physical properties of the gradient Ricci-Yamabe solitons satisying Einstein's field equations, under the assumptions of different subspaces of Gray's decompositions. For instance, we prove that if a GRYS space-time satisfying Einstein's field equations, in which the gradient of the potential function psi is a unit-timelike torse-forming vector field, belongs to the subspaces B and B', then it is a Robertson-Walker space-time with vanishing shear and vorticity. Moreover, its possible local cosmological structures are of Petrov types I, D, or O. Finally, we obtain the equations of state of a perfect-fluid space-time admitting the GRYS whose velocity field is a unit-timelike Killing vector field.
引用
收藏
页码:28 / 36
页数:9
相关论文
共 50 条
  • [1] On Gradient Ricci-Yamabe Solitons
    Karaca, Fatma
    Guler, Sinem
    IRANIAN JOURNAL OF SCIENCE, 2025,
  • [2] Ricci-Yamabe Solitons and Gradient Ricci-Yamabe Solitons on Kenmotsu 3-manifolds
    Sardar, Arpan
    Sarkar, Avijit
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 813 - 822
  • [3] Kenmotsu 3-manifold admitting gradient Ricci-Yamabe solitons and * - η- Ricci-Yamabe solitons
    Prasad, Rajendra
    Kumar, Vinay
    FILOMAT, 2024, 38 (13) : 4569 - 4583
  • [4] Gradient Ricci-Yamabe solitons on warped product manifolds
    Karaca, Fatma
    FILOMAT, 2023, 37 (07) : 2199 - 2207
  • [5] Curvature properties of α-cosymplectic manifolds with ∗-η-Ricci-Yamabe solitons
    Vandana
    Budhiraja, Rajeev
    Diop, Aliya Naaz Siddiqui
    CUBO-A MATHEMATICAL JOURNAL, 2024, 26 (01): : 91 - 105
  • [6] Isometries on almost Ricci-Yamabe solitons
    Khatri, Mohan
    Zosangzuala, C.
    Singh, Jay Prakash
    ARABIAN JOURNAL OF MATHEMATICS, 2023, 12 (01) : 127 - 138
  • [7] Ricci-Yamabe solitons on (κ, μ)-almost coKahler manifolds
    Mandal, Tarak
    AFRIKA MATEMATIKA, 2022, 33 (02)
  • [8] On Kenmotsu manifolds admitting η-Ricci-Yamabe solitons
    Yoldas, Halil Ibrahim
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (12)
  • [9] Sasakian Manifolds Admitting *-η-Ricci-Yamabe Solitons
    Haseeb, Abdul
    Prasad, Rajendra
    Mofarreh, Fatemah
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [10] ?-Ricci-Yamabe Solitons along Riemannian Submersions
    Siddiqi, Mohd Danish
    Mofarreh, Fatemah
    Akyol, Mehmet Akif
    Hakami, Ali H.
    Perez, Juan De Dios
    AXIOMS, 2023, 12 (08)