Existence and Physical Properties of Gradient Ricci-Yamabe Solitons

被引:0
|
作者
Guler, Sinem [1 ]
Karaca, Fatma [2 ,3 ]
机构
[1] Istanbul Sabahattin Zaim Univ, Dept Ind Engn, TR-34303 Istanbul, Turkiye
[2] Istanbul Beykent Univ, Dept Math, TR-34550 Istanbul, Turkiye
[3] Yildiz Tech Univ, Dept Math, TR-34220 Istanbul, Turkiye
来源
GRAVITATION & COSMOLOGY | 2025年 / 31卷 / 01期
关键词
D O I
10.1134/S0202289324700464
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We first prove the existence of the gradient Ricci-Yamabe soliton (briefly GRYS) by constructing an explicit example endowed with the Robertson-Walker metric. Then we focus on the physical properties of the gradient Ricci-Yamabe solitons satisying Einstein's field equations, under the assumptions of different subspaces of Gray's decompositions. For instance, we prove that if a GRYS space-time satisfying Einstein's field equations, in which the gradient of the potential function psi is a unit-timelike torse-forming vector field, belongs to the subspaces B and B', then it is a Robertson-Walker space-time with vanishing shear and vorticity. Moreover, its possible local cosmological structures are of Petrov types I, D, or O. Finally, we obtain the equations of state of a perfect-fluid space-time admitting the GRYS whose velocity field is a unit-timelike Killing vector field.
引用
收藏
页码:28 / 36
页数:9
相关论文
共 50 条
  • [21] Geometry of Indefinite Kenmotsu Manifolds as *η-Ricci-Yamabe Solitons
    Haseeb, Abdul
    Bilal, Mohd
    Chaubey, Sudhakar K.
    Khan, Mohammad Nazrul Islam
    AXIOMS, 2022, 11 (09)
  • [22] Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds
    De, Uday Chand
    Sardar, Arpan
    De, Krishnendu
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (03) : 1078 - 1088
  • [23] ( α,β )- TYPE ALMOST η-RICCI-YAMABE SOLITONS IN PERFECT FLUID SPACETIME
    Pandey, S.
    Mert, T.
    Atceken, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2024, 93 (03): : 171 - 183
  • [24] Ricci-Yamabe solitons on a class of generalized Sasakian space forms
    Sardar, Arpan
    Sarkar, Avijit
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (09)
  • [25] h-Almost Ricci-Yamabe Solitons in Paracontact Geometry
    De, Uday Chand
    Khan, Mohammad Nazrul Islam
    Sardar, Arpan
    MATHEMATICS, 2022, 10 (18)
  • [26] A study of *-Ricci-Yamabe solitons on LP-Kenmotsu manifolds
    Haseeb, Abdul
    Mofarreh, Fatemah
    Chaubey, Sudhakar Kumar
    Prasad, Rajendra
    AIMS MATHEMATICS, 2024, 9 (08): : 22532 - 22546
  • [27] Gradient Ricci-Yamabe Soliton on Twisted Product Manifolds
    Kim, Byung Hak
    Choi, Jin Hyuk
    Lee, Sang Deok
    Han, Chang Yong
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [28] On Almost Kenmotsu Manifolds admitting Conformal Ricci-Yamabe Solitons
    Singh, Jay Prakash
    Zosangzuala, Chhakchhuak
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43 : 23 - 23
  • [29] Almost Ricci-Yamabe Solitons in f-Kenmotsu Manifolds
    Shivaprasanna, G. S.
    Rajendra, R.
    Reddy, P. Siva Kota
    Somashekhara, G.
    Pavithra, M.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [30] On The Existence of Yamabe Gradient Solitons
    Mandal, Yadab Chandra
    Hui, Shyamal Kumar
    INTERNATIONAL JOURNAL OF MATHEMATICAL ENGINEERING AND MANAGEMENT SCIENCES, 2018, 3 (04) : 491 - 497