?-Conformally Flat LP-Kenmotsu Manifolds and Ricci-Yamabe Solitons

被引:8
|
作者
Haseeb, Abdul [1 ]
Bilal, Mohd [2 ]
Chaubey, Sudhakar K. [3 ]
Ahmadini, Abdullah Ali H. [1 ]
机构
[1] Jazan Univ, Coll Sci, Dept Math, Jazan 45142, Saudi Arabia
[2] Umm Al Qura Univ, Fac Appl Sci, Dept Math Sci, Mecca 21955, Saudi Arabia
[3] Univ Technol & Appl Sci, Dept IT, Sect Math, Shinas 324, Oman
关键词
Lorentzian manifolds; Ricci-Yamabe solitons; gradient Ricci-Yamabe solitons; perfect fluid spacetime; Einstein manifolds; 3-MANIFOLDS;
D O I
10.3390/math11010212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we characterize m-dimensional zeta-conformally flat LP-Kenmotsu manifolds (briefly, (LPK)(m)) equipped with the Ricci-Yamabe solitons (RYS) and gradient Ricci-Yamabe solitons (GRYS). It is proven that the scalar curvature r of an (LPK)(m) admitting an RYS satisfies the Poisson equation delta r=4(m-1)/delta{beta(m-1)+rho}+2(m-3)r - 4m(m-1)(m-2), where rho,delta(&NOTEQUexpressionL; 0) is an element of R. In this sequel, the condition for which the scalar curvature of an (LPK)(m) admitting an RYS holds the Laplace equation is established. We also give an affirmative answer for the existence of a GRYS on an (LPK)(m). Finally, a non-trivial example of an LP-Kenmotsu manifold (LPK) of dimension four is constructed to verify some of our results.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] GENERALIZED η-RICCI SOLITONS ON LP-KENMOTSU MANIFOLDS ASSOCIATED TO THE SCHOUTEN-VAN KAMPEN CONNECTION
    Azami, Shahroud
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2023, 85 (01): : 53 - 64
  • [22] Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds
    De, Uday Chand
    Sardar, Arpan
    De, Krishnendu
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (03) : 1078 - 1088
  • [23] Conformal η-Ricci-Yamabe Solitons within the Framework of ε-LP-Sasakian 3-Manifolds
    Haseeb, Abdul
    Khan, Meraj Ali
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [24] On Gradient Ricci-Yamabe Solitons
    Karaca, Fatma
    Guler, Sinem
    IRANIAN JOURNAL OF SCIENCE, 2025,
  • [25] η-Ricci--Yamabe and *-η-Ricci--Yamabe solitons in Lorentzian para-Kenmotsu manifolds
    Prasad, Rajendra
    Haseeb, Abdul
    Kumar, Vinay
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024, 44 (04): : 375 - 384
  • [26] YAMABE SOLITONS ON KENMOTSU MANIFOLDS
    Hui, Shyamal Kumar
    Mandal, Yadab Chandra
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (01): : 321 - 331
  • [27] Compact almost Co-Kahler manifolds and Ricci-Yamabe solitons
    Suh, Young Jin
    De, Krishnendu
    De, Uday Chand
    FILOMAT, 2024, 38 (23) : 8069 - 8080
  • [28] CERTAIN RESULTS OF RICCI-YAMABE SOLITONS ON (LCS)N-MANIFOLDS
    Singh, Jay Prakash
    Zosangzuala, Chhakchhuak
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (04): : 797 - 812
  • [29] Isometries on almost Ricci-Yamabe solitons
    Khatri, Mohan
    Zosangzuala, C.
    Singh, Jay Prakash
    ARABIAN JOURNAL OF MATHEMATICS, 2023, 12 (01) : 127 - 138
  • [30] η-Ricci solitons in ε-Kenmotsu manifolds
    Haseeb, Abdul
    De, Uday Chand
    JOURNAL OF GEOMETRY, 2019, 110 (02)