Machine learning-driven synthesis of TiZrNbHfTaC5 high-entropy carbide

被引:27
|
作者
Pak, Alexander Ya. [1 ]
Sotskov, Vadim [2 ]
Gumovskaya, Arina A. [1 ]
Vassilyeva, Yuliya Z. [1 ]
Bolatova, Zhanar S. [1 ]
Kvashnina, Yulia A. [3 ]
Mamontov, Gennady Ya. [1 ]
Shapeev, Alexander V. [2 ]
Kvashnin, Alexander G. [2 ]
机构
[1] Natl Res Tomsk Polytech Univ, 30 Lenin Ave, Tomsk 634050, Russia
[2] Skolkovo Inst Sci & Technol, Skolkovo Innovat Ctr, Bolshoi Blv 30,Bldg 1, Moscow 121205, Russia
[3] Pirogov Russian Natl Res Med Univ, 1 Ostrovityanova St, Moscow 117997, Russia
基金
俄罗斯科学基金会;
关键词
INITIO MOLECULAR-DYNAMICS; WALLED CARBON NANOTUBES; MECHANICAL-PROPERTIES; SELF-DIFFUSION; ARC-DISCHARGE; SINGLE-CRYSTALS; PHASE-STABILITY; METAL CARBIDES; TRANSITION; AIR;
D O I
10.1038/s41524-022-00955-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Synthesis of high-entropy carbides (HEC) requires high temperatures that can be provided by electric arc plasma method. However, the formation temperature of a single-phase sample remains unknown. Moreover, under some temperatures multi-phase structures can emerge. In this work, we developed an approach for a controllable synthesis of HEC TiZrNbHfTaC5 based on theoretical and experimental techniques. We used Canonical Monte Carlo (CMC) simulations with the machine learning interatomic potentials to determine the temperature conditions for the formation of single-phase and multi-phase samples. In full agreement with the theory, the single-phase sample, produced with electric arc discharge, was observed at 2000 K. Below 1200 K, the sample decomposed into (Ti-Nb-Ta)C, and a mixture of (Zr-Hf-Ta)C, (Zr-Nb-Hf)C, (Zr-Nb)C, and (Zr-Ta)C. Our results demonstrate the conditions for the formation of HEC and we anticipate that our approach can pave the way towards targeted synthesis of multicomponent materials.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Facile Electrochemical Synthesis of Nanoscale (TiNbTaZrHf)C High-Entropy Carbide Powder
    Sure, Jagadeesh
    Sri Maha Vishnu, D.
    Kim, Hyun-Kyung
    Schwandt, Carsten
    Advanced Materials, 2020, 59 (29) : 11928 - 11933
  • [42] Machine-learning and high-throughput studies for high-entropy materials
    Huang, E-Wen
    Lee, Wen-Jay
    Singh, Sudhanshu Shekhar
    Kumar, Poresh
    Lee, Chih-Yu
    Lam, Tu-Ngoc
    Chin, Hsu-Hsuan
    Lin, Bi-Hsuan
    Liaw, Peter K.
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2022, 147
  • [43] Facile Electrochemical Synthesis of Nanoscale (TiNbTaZrHf)C High-Entropy Carbide Powder
    Sure, Jagadeesh
    Sri Maha Vishnu, D.
    Kim, Hyun-Kyung
    Schwandt, Carsten
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (29) : 11830 - 11835
  • [44] Machine Learning-Driven Noise Separation in High Variation Genomics Sequencing Datasets
    Krachunov, Milko
    Nisheva, Maria
    Vassilev, Dimitar
    ARTIFICIAL INTELLIGENCE: METHODOLOGY, SYSTEMS, AND APPLICATIONS, AIMSA 2018, 2018, 11089 : 173 - 185
  • [45] Synthesis, microstructure and electromagnetic wave absorption properties of high-entropy carbide powders
    Zhang, Jiatai
    Wang, Weili
    Zhang, Zhixuan
    Chen, Jianqi
    Sun, Xiaoning
    Sun, Guoxun
    Liang, Yanjie
    Han, Guifang
    Zhang, Weibin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 966
  • [46] High-entropy boride-carbide ceramics by sequential boro/carbothermal synthesis
    Smith, Steven M., II
    Feng, Lun
    Fahrenholtz, William G.
    Hilmas, Greg E.
    Huang, Tieshu
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2022, 105 (09) : 5543 - 5547
  • [47] Low-temperature molten salt synthesis of high-entropy carbide nanopowders
    Ning, Shanshan
    Wen, Tongqi
    Ye, Beilin
    Chu, Yanhui
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2020, 103 (03) : 2244 - 2251
  • [48] Surface segregation in high-entropy alloys from alchemical machine learning
    Mazitov, Arslan
    Springer, Maximilian A.
    Lopanitsyna, Nataliya
    Fraux, Guillaume
    De, Sandip
    Ceriotti, Michele
    JOURNAL OF PHYSICS-MATERIALS, 2024, 7 (02):
  • [49] Machine learning of carbon vacancy formation energy in high-entropy carbides
    Zhao, Xi
    Yu, Sen
    Zheng, Jiming
    Reece, Michael J.
    Zhang, Rui-Zhi
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (04) : 1315 - 1321
  • [50] Machine learning enabled processing map generation for high-entropy alloy
    Kumar, Saphal
    Pradhan, Hrutidipan
    Shah, Naishalkumar
    Rahul, M. R.
    Phanikumar, Gandham
    SCRIPTA MATERIALIA, 2023, 234