Machine learning-driven synthesis of TiZrNbHfTaC5 high-entropy carbide

被引:27
|
作者
Pak, Alexander Ya. [1 ]
Sotskov, Vadim [2 ]
Gumovskaya, Arina A. [1 ]
Vassilyeva, Yuliya Z. [1 ]
Bolatova, Zhanar S. [1 ]
Kvashnina, Yulia A. [3 ]
Mamontov, Gennady Ya. [1 ]
Shapeev, Alexander V. [2 ]
Kvashnin, Alexander G. [2 ]
机构
[1] Natl Res Tomsk Polytech Univ, 30 Lenin Ave, Tomsk 634050, Russia
[2] Skolkovo Inst Sci & Technol, Skolkovo Innovat Ctr, Bolshoi Blv 30,Bldg 1, Moscow 121205, Russia
[3] Pirogov Russian Natl Res Med Univ, 1 Ostrovityanova St, Moscow 117997, Russia
基金
俄罗斯科学基金会;
关键词
INITIO MOLECULAR-DYNAMICS; WALLED CARBON NANOTUBES; MECHANICAL-PROPERTIES; SELF-DIFFUSION; ARC-DISCHARGE; SINGLE-CRYSTALS; PHASE-STABILITY; METAL CARBIDES; TRANSITION; AIR;
D O I
10.1038/s41524-022-00955-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Synthesis of high-entropy carbides (HEC) requires high temperatures that can be provided by electric arc plasma method. However, the formation temperature of a single-phase sample remains unknown. Moreover, under some temperatures multi-phase structures can emerge. In this work, we developed an approach for a controllable synthesis of HEC TiZrNbHfTaC5 based on theoretical and experimental techniques. We used Canonical Monte Carlo (CMC) simulations with the machine learning interatomic potentials to determine the temperature conditions for the formation of single-phase and multi-phase samples. In full agreement with the theory, the single-phase sample, produced with electric arc discharge, was observed at 2000 K. Below 1200 K, the sample decomposed into (Ti-Nb-Ta)C, and a mixture of (Zr-Hf-Ta)C, (Zr-Nb-Hf)C, (Zr-Nb)C, and (Zr-Ta)C. Our results demonstrate the conditions for the formation of HEC and we anticipate that our approach can pave the way towards targeted synthesis of multicomponent materials.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Structure prediction in high-entropy alloys with machine learning
    Zhao, D. Q.
    Pan, S. P.
    Zhang, Y.
    Liaw, P. K.
    Qiao, J. W.
    APPLIED PHYSICS LETTERS, 2021, 118 (23)
  • [22] High-entropy metal carbide nanowires
    Ma, Mengdong
    Hu, Xiaofei
    Meng, Hong
    Zhao, Zhisheng
    Chang, Keke
    Chu, Yanhui
    CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (04):
  • [23] A Novel Machine Learning-Driven Approach to High Throughput Mechanical Testing
    Niu, Tongjun
    Lee, Ross
    Lam, Sebastian
    Hafen, Joseph
    Lukow, Steven
    Li, Nan
    Hosemann, Peter
    Gigax, Jonathan
    JOM, 2025,
  • [24] Machine-learning-potential-driven prediction of high-entropy ceramics with ultra-high melting points
    Meng, Hong
    Liu, Yiwen
    Yu, Hulei
    Zhuang, Lei
    Chu, Yanhui
    CELL REPORTS PHYSICAL SCIENCE, 2025, 6 (02):
  • [25] Machine Learning Design for High-Entropy Alloys: Models and Algorithms
    Liu, Sijia
    Yang, Chao
    METALS, 2024, 14 (02)
  • [26] Machine learning-enabled high-entropy alloy discovery
    Rao, Ziyuan
    Tung, Po-Yen
    Xie, Ruiwen
    Wei, Ye
    Zhang, Hongbin
    Ferrari, Alberto
    Klaver, T. P. C.
    Koermann, Fritz
    Sukumar, Prithiv Thoudden
    da Silva, Alisson Kwiatkowski
    Chen, Yao
    Li, Zhiming
    Ponge, Dirk
    Neugebauer, Joerg
    Gutfleisch, Oliver
    Bauer, Stefan
    Raabe, Dierk
    SCIENCE, 2022, 378 (6615) : 78 - 84
  • [27] Machine-learning phase prediction of high-entropy alloys
    Huang, Wenjiang
    Martin, Pedro
    Zhuang, Houlong L.
    ACTA MATERIALIA, 2019, 169 : 225 - 236
  • [28] Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning
    Yao-Jen Chang
    Chia-Yung Jui
    Wen-Jay Lee
    An-Chou Yeh
    JOM, 2019, 71 : 3433 - 3442
  • [29] Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning
    Chang, Yao-Jen
    Jui, Chia-Yung
    Lee, Wen-Jay
    Yeh, An-Chou
    JOM, 2019, 71 (10) : 3433 - 3442
  • [30] Machine learning for high-entropy alloys: Progress, challenges and opportunities
    Liu, Xianglin
    Zhang, Jiaxin
    Pei, Zongrui
    PROGRESS IN MATERIALS SCIENCE, 2023, 131