Machine learning-driven synthesis of TiZrNbHfTaC5 high-entropy carbide

被引:27
|
作者
Pak, Alexander Ya. [1 ]
Sotskov, Vadim [2 ]
Gumovskaya, Arina A. [1 ]
Vassilyeva, Yuliya Z. [1 ]
Bolatova, Zhanar S. [1 ]
Kvashnina, Yulia A. [3 ]
Mamontov, Gennady Ya. [1 ]
Shapeev, Alexander V. [2 ]
Kvashnin, Alexander G. [2 ]
机构
[1] Natl Res Tomsk Polytech Univ, 30 Lenin Ave, Tomsk 634050, Russia
[2] Skolkovo Inst Sci & Technol, Skolkovo Innovat Ctr, Bolshoi Blv 30,Bldg 1, Moscow 121205, Russia
[3] Pirogov Russian Natl Res Med Univ, 1 Ostrovityanova St, Moscow 117997, Russia
基金
俄罗斯科学基金会;
关键词
INITIO MOLECULAR-DYNAMICS; WALLED CARBON NANOTUBES; MECHANICAL-PROPERTIES; SELF-DIFFUSION; ARC-DISCHARGE; SINGLE-CRYSTALS; PHASE-STABILITY; METAL CARBIDES; TRANSITION; AIR;
D O I
10.1038/s41524-022-00955-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Synthesis of high-entropy carbides (HEC) requires high temperatures that can be provided by electric arc plasma method. However, the formation temperature of a single-phase sample remains unknown. Moreover, under some temperatures multi-phase structures can emerge. In this work, we developed an approach for a controllable synthesis of HEC TiZrNbHfTaC5 based on theoretical and experimental techniques. We used Canonical Monte Carlo (CMC) simulations with the machine learning interatomic potentials to determine the temperature conditions for the formation of single-phase and multi-phase samples. In full agreement with the theory, the single-phase sample, produced with electric arc discharge, was observed at 2000 K. Below 1200 K, the sample decomposed into (Ti-Nb-Ta)C, and a mixture of (Zr-Hf-Ta)C, (Zr-Nb-Hf)C, (Zr-Nb)C, and (Zr-Ta)C. Our results demonstrate the conditions for the formation of HEC and we anticipate that our approach can pave the way towards targeted synthesis of multicomponent materials.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Machine-learning synergy in high-entropy alloys: A review
    Elkatatny, Sally
    Abd-Elaziem, Walaa
    Sebaey, Tamer A.
    Darwish, Moustafa A.
    Hamada, Atef
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 3976 - 3997
  • [32] Extending OpenMP for Machine Learning-Driven Adaptation
    Liao, Chunhua
    Wang, Anjia
    Georgakoudis, Giorgis
    de Supinski, Bronis R.
    Yan, Yonghong
    Beckingsale, David
    Gamblin, Todd
    ACCELERATOR PROGRAMMING USING DIRECTIVES, WACCPD 2021, 2022, 13194 : 49 - 69
  • [33] Machine learning-driven new material discovery
    Cai, Jiazhen
    Chu, Xuan
    Xu, Kun
    Li, Hongbo
    Wei, Jing
    NANOSCALE ADVANCES, 2020, 2 (08): : 3115 - 3130
  • [34] Machine Learning-Driven SERS Nanoendoscopy and Optophysiology
    Chisanga, Malama
    Masson, Jean-Francois
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2024, 17 : 313 - 338
  • [35] Machine Learning-Driven Prediction of Wear Rate and Phase Formation in High Entropy Alloy Coatings for Enhanced Durability and Performance
    Sivaraman, S.
    Radhika, N.
    Khan, Muhammad Abubaker
    IEEE ACCESS, 2025, 13 : 33956 - 33975
  • [36] High-entropy carbide ceramics: a perspective review
    Zhe Wang
    Zhong-Tao Li
    Shi-Jun Zhao
    Zheng-Gang Wu
    Tungsten, 2021, 3 : 131 - 142
  • [37] High-entropy carbide ceramics: a perspective review
    Zhe Wang
    Zhong-Tao Li
    Shi-Jun Zhao
    Zheng-Gang Wu
    Tungsten, 2021, 3 (02) : 131 - 142
  • [38] High-entropy carbide ceramics: a perspective review
    Wang, Zhe
    Li, Zhong-Tao
    Zhao, Shi-Jun
    Wu, Zheng-Gang
    TUNGSTEN, 2021, 3 (02) : 131 - 142
  • [39] Enhanced properties of (TaNbTiV)C high-entropy carbide ceramics through controlled structure and morphology of high-entropy carbide powders
    Li, Haitao
    Chen, Ruoyu
    Liu, Feng
    Li, Chengxin
    Yang, Xiaoyan
    Li, Saisai
    Jia, Wenbao
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2025, 22 (03)
  • [40] A machine learning-driven web application for sign language learning
    Orovwode, Hope
    Ibukun, Oduntan
    Abubakar, John Amanesi
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7