Machine Learning-Driven Prediction of Wear Rate and Phase Formation in High Entropy Alloy Coatings for Enhanced Durability and Performance

被引:0
|
作者
Sivaraman, S. [1 ]
Radhika, N. [1 ]
Khan, Muhammad Abubaker [2 ]
机构
[1] Amrita Vishwa Vidyapeetham, Dept Mech Engn, Amrita Sch Engn, Coimbatore 641112, India
[2] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Coatings; Predictive models; Training; Radio frequency; Accuracy; Entropy; Data models; Boosting; Thermal spraying; Terminology; High entropy alloys; machine learning; mutual information; Pearson correlation coefficient; variance inflation factors; MICROSTRUCTURE; REGRESSION; PROPERTY; BEHAVIOR;
D O I
10.1109/ACCESS.2025.3542507
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High Entropy Alloys (HEAs) are widely recognized for their excellent microstructure and properties, enhancing their effectiveness in surface modification through coatings techniques. These HEA coatings exhibit superior wear and corrosive resistance, making them suitable for various industries. However, accessing the wear behaviour and phase evolution of HEA coatings is complex and time-consuming due to their multiple element's nature. To address this, Machine Learning (ML) techniques were integrated to predict the wear rate and phase formation in HEA coatings processed through thermal spray methods. Ten ML models such as AdaBoost, XGBoost, CatBoost, GBRT, DT, SVM-RBF, MLP, BNN, MLR and HR were utilized to predict wear rate, Feature engineering was conducted using Mutual Information (MI) and Pearson Correlation Coefficient (PCC) to access feature significance, Variance Inflation Factors (VIFs) analyzed multicollinearity, identified influential elements for wear rate prediction and aiding in the development of novel Lightweight High Entropy Alloys (LHEAs) coating compositions. For phase prediction, four ML models including RF, GNB, ANN and Logistic regression were evaluated. Results demonstrated that XGBoost achieved the highest predictive effectiveness with an R2 of 0.98 and the lowest error values, validated against experimental data. In phase prediction, the RF model exhibited the best accuracy of 98.5% for novel LHEA coatings. These findings highlight the potential of ML techniques in facilitating material design and coating optimization.
引用
收藏
页码:33956 / 33975
页数:20
相关论文
共 50 条
  • [1] Machine learning-driven insights into phase prediction for high entropy alloys
    Jain, Reliance
    Jain, Sandeep
    Dewangan, Sheetal Kumar
    Boriwal, Lokesh Kumar
    Samal, Sumanta
    Journal of Alloys and Metallurgical Systems, 2024, 8
  • [2] Predictive analytics of wear performance in high entropy alloy coatings through machine learning
    Sivaraman, S.
    Radhika, N.
    PHYSICA SCRIPTA, 2024, 99 (07)
  • [3] High-entropy alloy catalysts: high-throughput and machine learning-driven design
    Chen, Lixin
    Chen, Zhiwen
    Yao, Xue
    Su, Baoxian
    Chen, Weijian
    Pang, Xin
    Kim, Keun-Su
    Singh, Chandra Veer
    Zou, Yu
    JOURNAL OF MATERIALS INFORMATICS, 2022, 2 (04):
  • [4] Machine learning guided phase formation prediction of high entropy alloys
    Qu N.
    Liu Y.
    Zhang Y.
    Yang D.
    Han T.
    Liao M.
    Lai Z.
    Zhu J.
    Zhang L.
    Materials Today Communications, 2022, 32
  • [5] Machine learning guided phase formation prediction of high entropy alloys
    Qu, Nan
    Liu, Yong
    Zhang, Yan
    Yang, Danni
    Han, Tianyi
    Liao, Mingqing
    Lai, Zhonghong
    Zhu, Jingchuan
    Zhang, Lin
    MATERIALS TODAY COMMUNICATIONS, 2022, 32
  • [6] Machine learning guided phase formation prediction of high entropy alloys
    Qu, Nan
    Liu, Yong
    Zhang, Yan
    Yang, Danni
    Han, Tianyi
    Liao, Mingqing
    Lai, Zhonghong
    Zhu, Jingchuan
    Zhang, Lin
    MATERIALS TODAY COMMUNICATIONS, 2022, 32
  • [7] Wear Resistance Prediction of AlCoCrFeNi-X (Ti, Cu) High-Entropy Alloy Coatings Based on Machine Learning
    Kang, Jiajie
    Niu, Yi
    Zhou, Yongkuan
    Fan, Yunxiao
    Ma, Guozheng
    METALS, 2023, 13 (05)
  • [8] Mechanically driven refractory high entropy alloy coatings: Phase formation and mechanical properties
    Li, Jianxiong
    Li, Yi
    Hassani, Mostafa
    SURFACE & COATINGS TECHNOLOGY, 2025, 496
  • [9] Design of high-performance high-entropy nitride ceramics via machine learning-driven strategy
    Zhou, Qian
    Xu, Feng
    Gao, Chengzuan
    Zhao, Wenxuan
    Shu, Lei
    Shi, Xianqing
    Yuen, Muk-Fung
    Zuo, Dunwen
    CERAMICS INTERNATIONAL, 2023, 49 (15) : 25964 - 25979
  • [10] Recent machine learning-driven investigations into high entropy alloys: A comprehensive review
    Yan, Yonggang
    Hu, Xunxiang
    Liao, Yalin
    Zhou, Yanyao
    He, Wenhao
    Zhou, Ting
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010