Machine learning-driven synthesis of TiZrNbHfTaC5 high-entropy carbide

被引:27
|
作者
Pak, Alexander Ya. [1 ]
Sotskov, Vadim [2 ]
Gumovskaya, Arina A. [1 ]
Vassilyeva, Yuliya Z. [1 ]
Bolatova, Zhanar S. [1 ]
Kvashnina, Yulia A. [3 ]
Mamontov, Gennady Ya. [1 ]
Shapeev, Alexander V. [2 ]
Kvashnin, Alexander G. [2 ]
机构
[1] Natl Res Tomsk Polytech Univ, 30 Lenin Ave, Tomsk 634050, Russia
[2] Skolkovo Inst Sci & Technol, Skolkovo Innovat Ctr, Bolshoi Blv 30,Bldg 1, Moscow 121205, Russia
[3] Pirogov Russian Natl Res Med Univ, 1 Ostrovityanova St, Moscow 117997, Russia
基金
俄罗斯科学基金会;
关键词
INITIO MOLECULAR-DYNAMICS; WALLED CARBON NANOTUBES; MECHANICAL-PROPERTIES; SELF-DIFFUSION; ARC-DISCHARGE; SINGLE-CRYSTALS; PHASE-STABILITY; METAL CARBIDES; TRANSITION; AIR;
D O I
10.1038/s41524-022-00955-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Synthesis of high-entropy carbides (HEC) requires high temperatures that can be provided by electric arc plasma method. However, the formation temperature of a single-phase sample remains unknown. Moreover, under some temperatures multi-phase structures can emerge. In this work, we developed an approach for a controllable synthesis of HEC TiZrNbHfTaC5 based on theoretical and experimental techniques. We used Canonical Monte Carlo (CMC) simulations with the machine learning interatomic potentials to determine the temperature conditions for the formation of single-phase and multi-phase samples. In full agreement with the theory, the single-phase sample, produced with electric arc discharge, was observed at 2000 K. Below 1200 K, the sample decomposed into (Ti-Nb-Ta)C, and a mixture of (Zr-Hf-Ta)C, (Zr-Nb-Hf)C, (Zr-Nb)C, and (Zr-Ta)C. Our results demonstrate the conditions for the formation of HEC and we anticipate that our approach can pave the way towards targeted synthesis of multicomponent materials.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Machine learning strategies for high-entropy alloys
    Rickman, J. M.
    Balasubramanian, G.
    Marvel, C. J.
    Chan, H. M.
    Burton, M. -T.
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (22)
  • [12] Research progress in high-entropy alloys driven by high throughput computation and machine learning br
    Zhang, Cong
    Liu, Jie
    Xie, Shuyi
    Xu, Bin
    Yin, Haiqing
    Liu, Binbin
    Qu, Xuanhui
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2023, 51 (03): : 1 - 16
  • [13] Active Learning-Driven Discovery of Sub-2 Nm High-Entropy Nanocatalysts for Alkaline Water Splitting
    Perumal, Sakthivel
    Han, Da Bean
    Marimuthu, Thandapani
    Lim, Taewaen
    Kim, Hyun Woo
    Seo, Junhyeok
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [14] Machine Learning-Driven Biomaterials Evolution
    Suwardi, Ady
    Wang, FuKe
    Xue, Kun
    Han, Ming-Yong
    Teo, Peili
    Wang, Pei
    Wang, Shijie
    Liu, Ye
    Ye, Enyi
    Li, Zibiao
    Loh, Xian Jun
    ADVANCED MATERIALS, 2022, 34 (01)
  • [15] Machine Learning-Driven Language Assessment
    Settles, Burr
    LaFlair, Geoffrey T.
    Hagiwara, Masato
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2020, 8 : 247 - 263
  • [16] A novel approach to the rapid synthesis of high-entropy carbide nanoparticles
    Zhao, Qinglong
    Mei, Jie
    Jin, Wei
    Jiang, Qichuan
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2020, 103 (09) : 4733 - 4737
  • [17] High-throughput and data-driven machine learning techniques for discovering high-entropy alloys
    Lu, Zhichao
    Dong, Ma
    Liu, Xiongjun
    Lu, Zhaoping
    COMMUNICATIONS MATERIALS, 2024, 5 (01)
  • [18] Discovery of high-entropy ceramics via machine learning
    Kevin Kaufmann
    Daniel Maryanovsky
    William M. Mellor
    Chaoyi Zhu
    Alexander S. Rosengarten
    Tyler J. Harrington
    Corey Oses
    Cormac Toher
    Stefano Curtarolo
    Kenneth S. Vecchio
    npj Computational Materials, 6
  • [19] Discovery of high-entropy ceramics via machine learning
    Kaufmann, Kevin
    Maryanovsky, Daniel
    Mellor, William M.
    Zhu, Chaoyi
    Rosengarten, Alexander S.
    Harrington, Tyler J.
    Oses, Corey
    Toher, Cormac
    Curtarolo, Stefano
    Vecchio, Kenneth S.
    NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [20] Synthesis of single-phase high-entropy carbide powders
    Feng, Lun
    Fahrenholtz, William G.
    Hilmas, Gregory E.
    Zhou, Yue
    SCRIPTA MATERIALIA, 2019, 162 : 90 - 93