Machine learning enabled processing map generation for high-entropy alloy

被引:18
|
作者
Kumar, Saphal [1 ]
Pradhan, Hrutidipan [1 ]
Shah, Naishalkumar [2 ]
Rahul, M. R. [1 ]
Phanikumar, Gandham [2 ]
机构
[1] Indian Inst Technol ISM Dhanbad, Dept Fuel Minerals & Met Engn, Dhanbad 826004, Jharkhand, India
[2] Indian Inst Technol Madras, Dept Met & Mat Engn, Chennai 600036, Tamil Nadu, India
关键词
Processing maps; Eutectic high entropy alloys; Machine learning; Hot deformation; HOT DEFORMATION; PHASE;
D O I
10.1016/j.scriptamat.2023.115543
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Identifying optimum processing conditions is necessary for new material development. The flow curves can be used to develop the processing map for an alloy. The current study trained multiple machine learning models such as Random Forest Regressor (RFR), K Nearest Neighbors (KNN), Extra Tree Regressor (ETR) and Artiflcial Neural Network (ANN) to predict the flow behaviour of the material. The testing R2 flt score of more than 0.99 was obtained for all four algorithms, and trained models were used to generate the flow curves at various temperature strain rate combinations for CoCrFeNiTa0.395 eutectic high entropy alloy. A processing map was developed using the results from ANN and validated with the experimental microstructure observations.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Machine learning-enabled high-entropy alloy discovery
    Rao, Ziyuan
    Tung, Po-Yen
    Xie, Ruiwen
    Wei, Ye
    Zhang, Hongbin
    Ferrari, Alberto
    Klaver, T. P. C.
    Koermann, Fritz
    Sukumar, Prithiv Thoudden
    da Silva, Alisson Kwiatkowski
    Chen, Yao
    Li, Zhiming
    Ponge, Dirk
    Neugebauer, Joerg
    Gutfleisch, Oliver
    Bauer, Stefan
    Raabe, Dierk
    SCIENCE, 2022, 378 (6615) : 78 - 84
  • [2] Deformation Behavior and Processing Map of AlCoCrFeNiTi0.5 High-Entropy Alloy at High Temperature
    Liu, Xinbin
    Li, Tiansheng
    Wang, Yong
    Kong, Xianghua
    Zhao, Chenyang
    COATINGS, 2023, 13 (10)
  • [3] Metallurgical Processing of CoCrFeNi High-Entropy Alloy
    Müller, P.
    Zadera, A.
    Čamek, L.
    Myška, M.
    Pernica, V.
    Archives of Foundry Engineering, 2024, 24 (04)
  • [4] Predictive descriptors in machine learning and data-enabled explorations of high-entropy alloys
    Roy, Ankit
    Balasubramanian, Ganesh
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 193
  • [5] RETRACTED: Phase Prediction Study of High-Entropy Energy Alloy Generation Based on Machine Learning (Retracted Article)
    He, Zhongping
    Zhang, Huan
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [6] Machine Learning Approach to Community Detection in a High-Entropy Alloy Interaction Network
    Nia, Raheleh Ghouchan Nezhad Noor
    Jalali, Mehrdad
    Mail, Matthias
    Ivanisenko, Yulia
    Kuebel, Christian
    ACS OMEGA, 2022, 7 (15): : 12978 - 12992
  • [7] Machine learning strategies for high-entropy alloys
    Rickman, J. M.
    Balasubramanian, G.
    Marvel, C. J.
    Chan, H. M.
    Burton, M. -T.
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (22)
  • [8] Accelerated design of high-entropy alloy coatings for high corrosion resistance via machine learning
    Cheng, Hongxu
    Luo, Hong
    Fan, Chunhui
    Wang, Xuefei
    Li, Chengtao
    SURFACE & COATINGS TECHNOLOGY, 2025, 502
  • [9] High-entropy alloy catalysts: high-throughput and machine learning-driven design
    Chen, Lixin
    Chen, Zhiwen
    Yao, Xue
    Su, Baoxian
    Chen, Weijian
    Pang, Xin
    Kim, Keun-Su
    Singh, Chandra Veer
    Zou, Yu
    JOURNAL OF MATERIALS INFORMATICS, 2022, 2 (04):
  • [10] Laser Generation of AlCrCuFeNi High-Entropy Alloy Nanocolloids
    Rawat, Rajesh
    Blanchard, Nicholas P.
    Shadangi, Yagnesh
    Tripathi, Ajay
    Amans, David
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (46): : 19815 - 19828