Machine learning enabled processing map generation for high-entropy alloy

被引:18
|
作者
Kumar, Saphal [1 ]
Pradhan, Hrutidipan [1 ]
Shah, Naishalkumar [2 ]
Rahul, M. R. [1 ]
Phanikumar, Gandham [2 ]
机构
[1] Indian Inst Technol ISM Dhanbad, Dept Fuel Minerals & Met Engn, Dhanbad 826004, Jharkhand, India
[2] Indian Inst Technol Madras, Dept Met & Mat Engn, Chennai 600036, Tamil Nadu, India
关键词
Processing maps; Eutectic high entropy alloys; Machine learning; Hot deformation; HOT DEFORMATION; PHASE;
D O I
10.1016/j.scriptamat.2023.115543
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Identifying optimum processing conditions is necessary for new material development. The flow curves can be used to develop the processing map for an alloy. The current study trained multiple machine learning models such as Random Forest Regressor (RFR), K Nearest Neighbors (KNN), Extra Tree Regressor (ETR) and Artiflcial Neural Network (ANN) to predict the flow behaviour of the material. The testing R2 flt score of more than 0.99 was obtained for all four algorithms, and trained models were used to generate the flow curves at various temperature strain rate combinations for CoCrFeNiTa0.395 eutectic high entropy alloy. A processing map was developed using the results from ANN and validated with the experimental microstructure observations.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Machine learning-assisted prediction of mechanical properties of high-entropy alloy/graphene nanocomposite
    Wu, Qingqing
    Gao, Tinghong
    Liu, Guiyang
    Ma, Yong
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [22] VASE: A High-Entropy Alloy Short-Range Order Structural Descriptor for Machine Learning
    Liu, Jiaheng
    Wang, Pengbo
    Luan, Jun
    Chen, Junwei
    Cai, Pengcheng
    Chen, Jianhua
    Lu, Xionggang
    Fan, Yunying
    Yu, Zhigang
    Chou, Kuochih
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (24) : 11082 - 11092
  • [23] Characterization of hot deformation behavior of Al0.3CoCrFeNi high-entropy alloy and development of processing map
    Patnamsetty, Madan
    Ghosh, Sumit
    Somani, Mahesh C.
    Peura, Pasi
    Journal of Alloys and Compounds, 2022, 914
  • [24] Characterization of hot deformation behavior of Al0.3CoCrFeNi high-entropy alloy and development of processing map
    Patnamsetty, Madan
    Ghosh, Sumit
    Somani, Mahesh C.
    Peura, Pasi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 914
  • [25] Polymorphism in a high-entropy alloy
    Fei Zhang
    Yuan Wu
    Hongbo Lou
    Zhidan Zeng
    Vitali B. Prakapenka
    Eran Greenberg
    Yang Ren
    Jinyuan Yan
    John S. Okasinski
    Xiongjun Liu
    Yong Liu
    Qiaoshi Zeng
    Zhaoping Lu
    Nature Communications, 8
  • [26] High-Entropy Alloy Films
    Cui, Kaixuan
    Zhang, Yong
    COATINGS, 2023, 13 (03)
  • [27] Polymorphism in a high-entropy alloy
    Zhang, Fei
    Wu, Yuan
    Lou, Hongbo
    Zeng, Zhidan
    Prakapenka, Vitali B.
    Greenberg, Eran
    Ren, Yang
    Yan, Jinyuan
    Okasinski, John S.
    Liu, Xiongjun
    Liu, Yong
    Zeng, Qiaoshi
    Lu, Zhaoping
    NATURE COMMUNICATIONS, 2017, 8
  • [28] Machine Learning Design for High-Entropy Alloys: Models and Algorithms
    Liu, Sijia
    Yang, Chao
    METALS, 2024, 14 (02)
  • [29] Machine-learning phase prediction of high-entropy alloys
    Huang, Wenjiang
    Martin, Pedro
    Zhuang, Houlong L.
    ACTA MATERIALIA, 2019, 169 : 225 - 236
  • [30] Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning
    Yao-Jen Chang
    Chia-Yung Jui
    Wen-Jay Lee
    An-Chou Yeh
    JOM, 2019, 71 : 3433 - 3442