Machine learning enabled processing map generation for high-entropy alloy

被引:18
|
作者
Kumar, Saphal [1 ]
Pradhan, Hrutidipan [1 ]
Shah, Naishalkumar [2 ]
Rahul, M. R. [1 ]
Phanikumar, Gandham [2 ]
机构
[1] Indian Inst Technol ISM Dhanbad, Dept Fuel Minerals & Met Engn, Dhanbad 826004, Jharkhand, India
[2] Indian Inst Technol Madras, Dept Met & Mat Engn, Chennai 600036, Tamil Nadu, India
关键词
Processing maps; Eutectic high entropy alloys; Machine learning; Hot deformation; HOT DEFORMATION; PHASE;
D O I
10.1016/j.scriptamat.2023.115543
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Identifying optimum processing conditions is necessary for new material development. The flow curves can be used to develop the processing map for an alloy. The current study trained multiple machine learning models such as Random Forest Regressor (RFR), K Nearest Neighbors (KNN), Extra Tree Regressor (ETR) and Artiflcial Neural Network (ANN) to predict the flow behaviour of the material. The testing R2 flt score of more than 0.99 was obtained for all four algorithms, and trained models were used to generate the flow curves at various temperature strain rate combinations for CoCrFeNiTa0.395 eutectic high entropy alloy. A processing map was developed using the results from ANN and validated with the experimental microstructure observations.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Correlating Nitrate Adsorption with the Local Environments of FeCoNiCuZn High-Entropy Alloy Catalysts Using Machine Learning
    He, Xiang
    LANGMUIR, 2024, 40 (30) : 15503 - 15511
  • [42] Preparing high-entropy ceramic films from high-entropy alloy substrate
    Li, Fei
    Cui, Wei
    Shao, Yang
    Zhang, Jie
    Du, Songmo
    Chen, Zhanglin
    Tian, Zhaobo
    Chen, Kexin
    Liu, Guanghua
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 287
  • [43] Machine-learning and high-throughput studies for high-entropy materials
    Huang, E-Wen
    Lee, Wen-Jay
    Singh, Sudhanshu Shekhar
    Kumar, Poresh
    Lee, Chih-Yu
    Lam, Tu-Ngoc
    Chin, Hsu-Hsuan
    Lin, Bi-Hsuan
    Liaw, Peter K.
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2022, 147
  • [44] Discovery of a Superconducting High-Entropy Alloy
    Kozelj, P.
    Vrtnik, S.
    Jelen, A.
    Jazbec, S.
    Jaglicic, Z.
    Maiti, S.
    Feuerbacher, M.
    Steurer, W.
    Dolinsek, J.
    PHYSICAL REVIEW LETTERS, 2014, 113 (10)
  • [45] Surface segregation in high-entropy alloys from alchemical machine learning
    Mazitov, Arslan
    Springer, Maximilian A.
    Lopanitsyna, Nataliya
    Fraux, Guillaume
    De, Sandip
    Ceriotti, Michele
    JOURNAL OF PHYSICS-MATERIALS, 2024, 7 (02):
  • [46] Machine learning of carbon vacancy formation energy in high-entropy carbides
    Zhao, Xi
    Yu, Sen
    Zheng, Jiming
    Reece, Michael J.
    Zhang, Rui-Zhi
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (04) : 1315 - 1321
  • [47] Yield strength prediction of high-entropy alloys using machine learning
    Bhandari, Uttam
    Rafi, Md Rumman
    Zhang, Congyan
    Yang, Shizhong
    MATERIALS TODAY COMMUNICATIONS, 2021, 26
  • [48] The development of studies in high-entropy alloy
    Gao, Jia-Cheng
    Li, Rui
    Gongneng Cailiao/Journal of Functional Materials, 2008, 39 (07): : 1059 - 1061
  • [49] High-entropy alloy: challenges and prospects
    Ye, Y. F.
    Wang, Q.
    Lu, J.
    Liu, C. T.
    Yang, Y.
    MATERIALS TODAY, 2016, 19 (06) : 349 - 362
  • [50] A dimensionally augmented and physics-informed machine learning for quality prediction of additively manufactured high-entropy alloy
    Wang, Haijie
    Li, Bo
    Xuan, Fu-Zhen
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2022, 307