Machine learning enabled processing map generation for high-entropy alloy

被引:18
|
作者
Kumar, Saphal [1 ]
Pradhan, Hrutidipan [1 ]
Shah, Naishalkumar [2 ]
Rahul, M. R. [1 ]
Phanikumar, Gandham [2 ]
机构
[1] Indian Inst Technol ISM Dhanbad, Dept Fuel Minerals & Met Engn, Dhanbad 826004, Jharkhand, India
[2] Indian Inst Technol Madras, Dept Met & Mat Engn, Chennai 600036, Tamil Nadu, India
关键词
Processing maps; Eutectic high entropy alloys; Machine learning; Hot deformation; HOT DEFORMATION; PHASE;
D O I
10.1016/j.scriptamat.2023.115543
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Identifying optimum processing conditions is necessary for new material development. The flow curves can be used to develop the processing map for an alloy. The current study trained multiple machine learning models such as Random Forest Regressor (RFR), K Nearest Neighbors (KNN), Extra Tree Regressor (ETR) and Artiflcial Neural Network (ANN) to predict the flow behaviour of the material. The testing R2 flt score of more than 0.99 was obtained for all four algorithms, and trained models were used to generate the flow curves at various temperature strain rate combinations for CoCrFeNiTa0.395 eutectic high entropy alloy. A processing map was developed using the results from ANN and validated with the experimental microstructure observations.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Enhancing high-entropy alloy performance: Predictive modelling of wear rates with machine learning
    Niketh, Madabhushi Siri
    Radhika, N.
    Adediran, Adeolu Adesoji
    Jen, Tien-Chien
    RESULTS IN ENGINEERING, 2024, 23
  • [12] Harnessing machine learning for high-entropy alloy catalysis: a focus on adsorption energy prediction
    Wang, Qi
    Yao, Yonggang
    NPJ COMPUTATIONAL MATERIALS, 2025, 11 (01)
  • [13] Estimating the lattice thermal conductivity of AlCoCrNiFe high-entropy alloy using machine learning
    Lu, Jie
    Huang, Xiaona
    Yue, Yanan
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (13)
  • [14] Discovery of high-entropy ceramics via machine learning
    Kevin Kaufmann
    Daniel Maryanovsky
    William M. Mellor
    Chaoyi Zhu
    Alexander S. Rosengarten
    Tyler J. Harrington
    Corey Oses
    Cormac Toher
    Stefano Curtarolo
    Kenneth S. Vecchio
    npj Computational Materials, 6
  • [15] Discovery of high-entropy ceramics via machine learning
    Kaufmann, Kevin
    Maryanovsky, Daniel
    Mellor, William M.
    Zhu, Chaoyi
    Rosengarten, Alexander S.
    Harrington, Tyler J.
    Oses, Corey
    Toher, Cormac
    Curtarolo, Stefano
    Vecchio, Kenneth S.
    NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [16] Structure prediction in high-entropy alloys with machine learning
    Zhao, D. Q.
    Pan, S. P.
    Zhang, Y.
    Liaw, P. K.
    Qiao, J. W.
    APPLIED PHYSICS LETTERS, 2021, 118 (23)
  • [17] Processing and characterisation of nano crystalline AlCoCrCuFeTix high-entropy alloy
    Murali, M.
    Babu, S. P. Kumaresh
    Majhi, Jichil
    Vallimanalan, A.
    Mahendran, R.
    POWDER METALLURGY, 2018, 61 (02) : 139 - 148
  • [18] Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy
    Gludovatz, Bernd
    George, Easo P.
    Ritchie, Robert O.
    JOM, 2015, 67 (10) : 2262 - 2270
  • [19] Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy
    Bernd Gludovatz
    Easo P. George
    Robert O. Ritchie
    JOM, 2015, 67 : 2262 - 2270
  • [20] Machine Learning Assisted Design of High-Entropy Alloy Interphase Layer for Lithium Metal Batteries
    Xu, Chenxi
    Zhao, Teng
    Wang, Ke
    Yu, Tianyang
    Tang, Wangming
    Li, Li
    Wu, Feng
    Chen, Renjie
    ADVANCED FUNCTIONAL MATERIALS, 2025,