Polynomization of the Bessenrodt-Ono Type Inequalities for A-Partition Functions

被引:1
|
作者
Gajdzica, Krystian [1 ]
Heim, Bernhard [2 ,4 ]
Neuhauser, Markus [3 ,4 ]
机构
[1] Jagiellonian Univ, Inst Math, Fac Math & Comp Sci, S Lojasiewicza 6, PL-30348 Krakow, Poland
[2] Univ Cologne, Math Inst, Fac Math & Nat Sci, Weyertal 86-90, D-50931 Cologne, Germany
[3] Kutaisi Int Univ, Youth Ave 5-7, Kutaisi 4600, Georgia
[4] Rhein Westfal TH Aachen, Lehrstuhl A Math, D-52056 Aachen, Germany
关键词
Partition; Restricted partition function; Unrestricted partition function; Polynomization; Bessenrodt-Ono inequality; SERIES; PARTS; PROOF;
D O I
10.1007/s00026-024-00692-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an arbitrary set or multiset A of positive integers, we associate the A-partition function pA (n) (that is the number of partitions of n whose parts belong to A). We also consider the analogue of the k-colored partition function, namely ,pA,-k(n). Further, we define a family of polynomials f(A,n)(x) which satisfy the equality f(A,n)(k)=pA,-k(n)forall n is an element of Z >= 0 and k is an element of N. This paper concerns a polynomialization of the Bessenrodt-Ono inequality, namely f(A,a)(x)f(A,b)(x)>f(A,a+b)(x), where a,b are positive integers. We determine efficient criteria for the solutions of this inequality. Moreover, we also investigate a few basic properties related to both functions f(A,n)(x) and f '(A,n)(x)
引用
收藏
页码:1323 / 1345
页数:23
相关论文
共 50 条
  • [11] Variants of an partition inequality of Bessenrodt–Ono
    Bernhard Heim
    Markus Neuhauser
    Research in Number Theory, 2019, 5
  • [12] SOME GENERATING FUNCTIONS AND INEQUALITIES FOR THE ANDREWS-STANLEY PARTITION FUNCTIONS
    Chen, Na
    Chern, Shane
    Fan, Yan
    Xia, Ernest X. W.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2022, 65 (01) : 120 - 135
  • [13] Inequalities for the broken k-diamond partition functions
    Jia, Dennis X. Q.
    JOURNAL OF NUMBER THEORY, 2023, 249 : 314 - 347
  • [14] Some inequalities for k-colored partition functions
    Chern, Shane
    Fu, Shishuo
    Tang, Dazhao
    RAMANUJAN JOURNAL, 2018, 46 (03): : 713 - 725
  • [15] Some inequalities for k-colored partition functions
    Shane Chern
    Shishuo Fu
    Dazhao Tang
    The Ramanujan Journal, 2018, 46 : 713 - 725
  • [16] Sharp inequalities for ratios of partition functions of Schrodinger operators
    You, DH
    POTENTIAL ANALYSIS, 2003, 18 (03) : 219 - 250
  • [17] ZEROS OF PARTITION-FUNCTIONS VIA CORRELATION INEQUALITIES
    DUNLOP, F
    JOURNAL OF STATISTICAL PHYSICS, 1977, 17 (04) : 215 - 228
  • [18] Generalized Alder-Type Partition Inequalities
    Armstrong, Liam
    Ducasse, Bryan
    Meyer, Thomas
    Swisher, Holly
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (02):
  • [19] GENERALIZED ALDER-TYPE PARTITION INEQUALITIES
    Armstrong, Liam
    Ducasse, Bryan
    Meyer, Thomas
    Swisher, Holly
    arXiv, 2022,
  • [20] Entropy and set cardinality inequalities for partition-determined functions
    Madiman, Mokshay
    Marcus, Adam W.
    Tetali, Prasad
    RANDOM STRUCTURES & ALGORITHMS, 2012, 40 (04) : 399 - 424