Polynomization of the Bessenrodt-Ono Type Inequalities for A-Partition Functions

被引:1
|
作者
Gajdzica, Krystian [1 ]
Heim, Bernhard [2 ,4 ]
Neuhauser, Markus [3 ,4 ]
机构
[1] Jagiellonian Univ, Inst Math, Fac Math & Comp Sci, S Lojasiewicza 6, PL-30348 Krakow, Poland
[2] Univ Cologne, Math Inst, Fac Math & Nat Sci, Weyertal 86-90, D-50931 Cologne, Germany
[3] Kutaisi Int Univ, Youth Ave 5-7, Kutaisi 4600, Georgia
[4] Rhein Westfal TH Aachen, Lehrstuhl A Math, D-52056 Aachen, Germany
关键词
Partition; Restricted partition function; Unrestricted partition function; Polynomization; Bessenrodt-Ono inequality; SERIES; PARTS; PROOF;
D O I
10.1007/s00026-024-00692-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an arbitrary set or multiset A of positive integers, we associate the A-partition function pA (n) (that is the number of partitions of n whose parts belong to A). We also consider the analogue of the k-colored partition function, namely ,pA,-k(n). Further, we define a family of polynomials f(A,n)(x) which satisfy the equality f(A,n)(k)=pA,-k(n)forall n is an element of Z >= 0 and k is an element of N. This paper concerns a polynomialization of the Bessenrodt-Ono inequality, namely f(A,a)(x)f(A,b)(x)>f(A,a+b)(x), where a,b are positive integers. We determine efficient criteria for the solutions of this inequality. Moreover, we also investigate a few basic properties related to both functions f(A,n)(x) and f '(A,n)(x)
引用
收藏
页码:1323 / 1345
页数:23
相关论文
共 50 条
  • [31] On Jordan Type Inequalities for Hyperbolic Functions
    Klen, R.
    Visuri, M.
    Vuorinen, M.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [32] Bernstein type inequalities for rational functions
    Idrees Qasim
    A. Liman
    Indian Journal of Pure and Applied Mathematics, 2015, 46 : 337 - 348
  • [33] Inequalities of Carlson Type for α-Bloch Functions
    Kayumov, I. R.
    Wirths, Karl-Joachim
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (03)
  • [34] Turan type inequalities for hypergeometric functions
    Baricz, Arpad
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (09) : 3223 - 3229
  • [35] BERNSTEIN TYPE INEQUALITIES FOR RATIONAL FUNCTIONS
    Qasim, Idrees
    Liman, A.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (03): : 337 - 348
  • [36] On Lyapunov type inequalities for symmetric functions
    Chang-Jian Zhao
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3169 - 3176
  • [37] Turán inequalities for the broken k-diamond partition functions
    Janet J. W. Dong
    Kathy Q. Ji
    Dennis X. Q. Jia
    The Ramanujan Journal, 2023, 62 : 593 - 615
  • [38] HERMITE-HADAMARD TYPE INEQUALITIES AND RELATED INEQUALITIES FOR SUBADDITIVE FUNCTIONS
    Sarikaya, Mehmet Zeki
    Ali, Muhammad Aamir
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (02) : 929 - 937
  • [39] TURAN TYPE INEQUALITIES FOR MODIFIED BESSEL FUNCTIONS
    Baricz, Arpad
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 82 (02) : 254 - 264
  • [40] Bohr-type inequalities of analytic functions
    Liu, Ming-Sheng
    Shang, Yin-Miao
    Xu, Jun-Feng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,