Polynomization of the Bessenrodt-Ono Type Inequalities for A-Partition Functions

被引:1
|
作者
Gajdzica, Krystian [1 ]
Heim, Bernhard [2 ,4 ]
Neuhauser, Markus [3 ,4 ]
机构
[1] Jagiellonian Univ, Inst Math, Fac Math & Comp Sci, S Lojasiewicza 6, PL-30348 Krakow, Poland
[2] Univ Cologne, Math Inst, Fac Math & Nat Sci, Weyertal 86-90, D-50931 Cologne, Germany
[3] Kutaisi Int Univ, Youth Ave 5-7, Kutaisi 4600, Georgia
[4] Rhein Westfal TH Aachen, Lehrstuhl A Math, D-52056 Aachen, Germany
关键词
Partition; Restricted partition function; Unrestricted partition function; Polynomization; Bessenrodt-Ono inequality; SERIES; PARTS; PROOF;
D O I
10.1007/s00026-024-00692-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an arbitrary set or multiset A of positive integers, we associate the A-partition function pA (n) (that is the number of partitions of n whose parts belong to A). We also consider the analogue of the k-colored partition function, namely ,pA,-k(n). Further, we define a family of polynomials f(A,n)(x) which satisfy the equality f(A,n)(k)=pA,-k(n)forall n is an element of Z >= 0 and k is an element of N. This paper concerns a polynomialization of the Bessenrodt-Ono inequality, namely f(A,a)(x)f(A,b)(x)>f(A,a+b)(x), where a,b are positive integers. We determine efficient criteria for the solutions of this inequality. Moreover, we also investigate a few basic properties related to both functions f(A,n)(x) and f '(A,n)(x)
引用
收藏
页码:1323 / 1345
页数:23
相关论文
共 50 条
  • [41] Turan-type inequalities for the supertrigonometric functions
    Geng, Lu-Lu
    Yang, Xiao-Jun
    Liu, Jian-Gen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (07) : 3514 - 3519
  • [42] Sections of Functions and Sobolev-Type Inequalities
    V. I. Kolyada
    Proceedings of the Steklov Institute of Mathematics, 2014, 284 : 192 - 203
  • [43] WILKER AND HUYGENS TYPE INEQUALITIES FOR THE LEMNISCATE FUNCTIONS
    Chen, Chao-Ping
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (04): : 673 - 684
  • [44] ON TURAN TYPE INEQUALITIES FOR MODIFIED BESSEL FUNCTIONS
    Baricz, Arpad
    Ponnusamy, Saminathan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (02) : 523 - 532
  • [45] MULTIVARIATE IYENGAR TYPE INEQUALITIES FOR RADIAL FUNCTIONS
    Anastassiou, George A.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2019, 8 (02): : 3 - 27
  • [47] NEW TRAPEZOID TYPE INEQUALITIES FOR DIFFERENTIABLE FUNCTIONS
    Yavuz, Melike
    Budak, Huseyin
    Bas, Umut
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (02): : 345 - 360
  • [48] Bohr-type inequalities of analytic functions
    Ming-Sheng Liu
    Yin-Miao Shang
    Jun-Feng Xu
    Journal of Inequalities and Applications, 2018
  • [49] Wilker-type inequalities for hyperbolic functions
    Wu, Shanhe
    Debnath, Lokenath
    APPLIED MATHEMATICS LETTERS, 2012, 25 (05) : 837 - 842
  • [50] TURAN TYPE INEQUALITIES FOR GENERAL BESSEL FUNCTIONS
    Baricz, Arpad
    Ponnusamy, Saminathan
    Singh, Sanjeev
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (02): : 709 - 719