GENERALIZED ALDER-TYPE PARTITION INEQUALITIES

被引:0
|
作者
Armstrong, Liam [1 ]
Ducasse, Bryan [2 ]
Meyer, Thomas [3 ]
Swisher, Holly [1 ]
机构
[1] Oregon State University, United States
[2] University of Central Florida, United States
[3] Amherst College, United States
来源
arXiv | 2022年
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Parks
引用
收藏
相关论文
共 50 条
  • [1] Generalized Alder-Type Partition Inequalities
    Armstrong, Liam
    Ducasse, Bryan
    Meyer, Thomas
    Swisher, Holly
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (02):
  • [2] Analogues of Alder-Type Partition Inequalities for Fixed Perimeter Partitions
    Occidental College, United States
    不详
    不详
    arXiv, 1600,
  • [3] Alder-type partition inequality at the general level
    Cho, Haein
    Kang, Soon-Yi
    Kim, Byungchan
    DISCRETE MATHEMATICS, 2024, 347 (11)
  • [4] Mulberry Diels–Alder-type adducts: isolation, structure, bioactivity, and synthesis
    Si-Yuan Luo
    Jun-Yu Zhu
    Ming-Feng Zou
    Sheng Yin
    Gui-Hua Tang
    Natural Products and Bioprospecting, 2022, 12
  • [5] Formation of holoferritin hexagonal arrays in secondary films due to Alder-type transition
    Adachi, E
    Nagayama, K
    LANGMUIR, 1996, 12 (07) : 1836 - 1839
  • [6] Formation of holoferritin hexagonal arrays in secondary films due to Alder-type transition
    ERATO, Ibaraki, Japan
    Langmuir, 7 (1836-1839):
  • [7] GENERALIZED FRACTIONAL STEFFENSEN TYPE INEQUALITIES
    Pecaric, J.
    Peric, I.
    Smoljak, K.
    EURASIAN MATHEMATICAL JOURNAL, 2012, 3 (04): : 81 - 98
  • [8] Generalized Integral Inequalities of Chebyshev Type
    Guzman, Paulo M.
    Korus, Peter
    Napoles Valdes, Juan E.
    FRACTAL AND FRACTIONAL, 2020, 4 (02) : 1 - 7
  • [9] On The Generalized Inequalities Of The Hermite - Hadamard Type
    Napoles Valdes, Juan E.
    Bayraktar, Bahtiyar
    FILOMAT, 2021, 35 (14) : 4917 - 4924
  • [10] Generalized Caputo Type Fractional Inequalities
    Anastassiou, George A.
    INTELLIGENT MATHEMATICS II: APPLIED MATHEMATICS AND APPROXIMATION THEORY, 2016, 441 : 423 - 454