Inequalities for the broken k-diamond partition functions

被引:6
|
作者
Jia, Dennis X. Q. [1 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
关键词
The higher order Tur?n inequalities; The broken k-diamond partition; functions; The Jensen polynomials; Finite difference; JENSEN POLYNOMIALS; LOG-CONCAVITY; CONGRUENCES; ANDREWS; TURAN;
D O I
10.1016/j.jnt.2023.02.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2007, Andrews and Paule introduced the broken k -diamond partition function Delta k(n). Many researches on the arithmetic properties for Delta k(n) have been done. In this paper, we prove that D3 log Delta 1(n - 1) > 0 for n > 5 and D3 log Delta 2(n - 1) > 0 for n > 7, where D is the difference operator with respect to n. We also conjecture that for any k > 1 and r > 1, there exists a positive integer nk(r) such that for n > nk(r), (-1)rDr log Delta k(n) > 0. This is analogous to the positivity of finite differences of the logarithm of the partition function, which has been proved by Chen, Wang, and Xie. Furthermore, we obtain that both {Delta 1(n)}n >= 0 and {Delta 2(n)}n >= 0 satisfy the higher order Turan inequalities for n > 6.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:314 / 347
页数:34
相关论文
共 50 条
  • [1] Turan inequalities for the broken k-diamond partition functions
    Dong, Janet J. W.
    Ji, Kathy Q.
    Jia, Dennis X. Q.
    RAMANUJAN JOURNAL, 2023, 62 (02): : 593 - 615
  • [2] Turán inequalities for the broken k-diamond partition functions
    Janet J. W. Dong
    Kathy Q. Ji
    Dennis X. Q. Jia
    The Ramanujan Journal, 2023, 62 : 593 - 615
  • [3] The Laguerre inequality and determinantal inequality for the broken k-diamond partition function
    Yang, Eve Y. Y.
    RAMANUJAN JOURNAL, 2024, 64 (03): : 857 - 880
  • [4] Congruences for Broken k-Diamond Partitions
    Marie Jameson
    Annals of Combinatorics, 2013, 17 : 333 - 338
  • [5] Congruences for Broken k-Diamond Partitions
    Jameson, Marie
    ANNALS OF COMBINATORICS, 2013, 17 (02) : 333 - 338
  • [6] New congruences for broken k-diamond partitions
    Yu, Jing-Jun
    RAMANUJAN JOURNAL, 2024, 65 (04): : 1621 - 1629
  • [7] New Congruences for Broken k-Diamond Partitions
    Tang, Dazhao
    JOURNAL OF INTEGER SEQUENCES, 2018, 21 (05)
  • [8] Congruences modulo 4 for broken k-diamond partitions
    Ernest X. W. Xia
    The Ramanujan Journal, 2018, 45 : 331 - 348
  • [9] Congruences modulo 4 for broken k-diamond partitions
    Xia, Ernest X. W.
    RAMANUJAN JOURNAL, 2018, 45 (02): : 331 - 348
  • [10] New Congruences for Broken k-Diamond and k Dots Bracelet Partitions
    Yu, Jing-Jun
    MATHEMATICAL NOTES, 2022, 112 (3-4) : 393 - 405