Turan inequalities for the broken k-diamond partition functions

被引:6
|
作者
Dong, Janet J. W. [1 ]
Ji, Kathy Q. [1 ]
Jia, Dennis X. Q. [1 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
来源
RAMANUJAN JOURNAL | 2023年 / 62卷 / 02期
基金
美国国家科学基金会;
关键词
Broken k-diamond partition functions; Log-concavity; Higher order Turan inequalities; Jensen polynomials; LOG-CONCAVITY; MULTIPLICATIVE PROPERTIES; CONGRUENCES;
D O I
10.1007/s11139-022-00687-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain an asymptotic formula for Andrews and Paule's broken k-diamond partition function triangle(k)(n) where k=1 or 2. Based on this asymptotic formula, we derive that triangle(k)(n) satisfies the order d Turan inequalities for d >= 1 and for sufficiently large n when k=1 and 2 by using a general result of Griffin, Ono, Rolen and Zagier. We also show that Andrews and Paule's broken k-diamond partition function triangle(k)(n) is log-concave for n >= 1 when k=1 and 2. This leads to triangle(k) (a) triangle(k) (b)>= triangle(k) (a+b) for a,b >= 1 when k=1 and 2.
引用
收藏
页码:593 / 615
页数:23
相关论文
共 50 条