Congruences modulo 4 for broken k-diamond partitions

被引:0
|
作者
Ernest X. W. Xia
机构
[1] Jiangsu University,Department of Mathematics
来源
The Ramanujan Journal | 2018年 / 45卷
关键词
Broken ; -Diamond partition; Congruence; Theta function; 11P83; 05A17;
D O I
暂无
中图分类号
学科分类号
摘要
The notion of broken k-diamond partitions was introduced by Andrews and Paule. Let Δk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(n)$$\end{document} denote the number of broken k-diamond partitions of n for a fixed positive integer k. Recently, a number of parity results satisfied by Δk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(n)$$\end{document} for small values of k have been proved by Radu and Sellers and others. However, congruences modulo 4 for Δk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(n)$$\end{document} are unknown. In this paper, we will prove five congruences modulo 4 for Δ5(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _5(n)$$\end{document}, four infinite families of congruences modulo 4 for Δ7(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _7(n)$$\end{document} and one congruence modulo 4 for Δ11(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{11}(n)$$\end{document} by employing theta function identities. Furthermore, we will prove a new parity result for Δ2(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _2(n)$$\end{document}.
引用
收藏
页码:331 / 348
页数:17
相关论文
共 50 条
  • [1] Congruences modulo 4 for broken k-diamond partitions
    Xia, Ernest X. W.
    RAMANUJAN JOURNAL, 2018, 45 (02): : 331 - 348
  • [2] Congruences for Broken k-Diamond Partitions
    Marie Jameson
    Annals of Combinatorics, 2013, 17 : 333 - 338
  • [3] Congruences for Broken k-Diamond Partitions
    Jameson, Marie
    ANNALS OF COMBINATORICS, 2013, 17 (02) : 333 - 338
  • [4] New congruences for broken k-diamond partitions
    Yu, Jing-Jun
    RAMANUJAN JOURNAL, 2024, 65 (04): : 1621 - 1629
  • [5] New Congruences for Broken k-Diamond Partitions
    Tang, Dazhao
    JOURNAL OF INTEGER SEQUENCES, 2018, 21 (05)
  • [6] New Congruences for Broken k-Diamond and k Dots Bracelet Partitions
    Yu, Jing-Jun
    MATHEMATICAL NOTES, 2022, 112 (3-4) : 393 - 405
  • [7] Congruences modulo 7 for broken 3-diamond partitions
    Liu, Eric H.
    Du, Wenjing
    RAMANUJAN JOURNAL, 2019, 50 (02): : 253 - 262
  • [8] Congruences modulo 11 for broken 5-diamond partitions
    Eric H. Liu
    James A. Sellers
    Ernest X. W. Xia
    The Ramanujan Journal, 2018, 46 : 151 - 159
  • [9] Congruences modulo 7 for broken 3-diamond partitions
    Eric H. Liu
    Wenjing Du
    The Ramanujan Journal, 2019, 50 : 253 - 262
  • [10] Congruences modulo 11 for broken 5-diamond partitions
    Liu, Eric H.
    Sellers, James A.
    Xia, Ernest X. W.
    RAMANUJAN JOURNAL, 2018, 46 (01): : 151 - 159