Congruences modulo 4 for broken k-diamond partitions

被引:0
|
作者
Ernest X. W. Xia
机构
[1] Jiangsu University,Department of Mathematics
来源
The Ramanujan Journal | 2018年 / 45卷
关键词
Broken ; -Diamond partition; Congruence; Theta function; 11P83; 05A17;
D O I
暂无
中图分类号
学科分类号
摘要
The notion of broken k-diamond partitions was introduced by Andrews and Paule. Let Δk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(n)$$\end{document} denote the number of broken k-diamond partitions of n for a fixed positive integer k. Recently, a number of parity results satisfied by Δk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(n)$$\end{document} for small values of k have been proved by Radu and Sellers and others. However, congruences modulo 4 for Δk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(n)$$\end{document} are unknown. In this paper, we will prove five congruences modulo 4 for Δ5(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _5(n)$$\end{document}, four infinite families of congruences modulo 4 for Δ7(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _7(n)$$\end{document} and one congruence modulo 4 for Δ11(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{11}(n)$$\end{document} by employing theta function identities. Furthermore, we will prove a new parity result for Δ2(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _2(n)$$\end{document}.
引用
收藏
页码:331 / 348
页数:17
相关论文
共 50 条
  • [21] Newman's identity and infinite families of congruences modulo 7 for broken 3-diamond partitions
    Yao, Olivia X. M.
    Wang, Ya Juan
    RAMANUJAN JOURNAL, 2017, 43 (03): : 619 - 631
  • [22] Broken 2-diamond partitions modulo 5
    Michael D. Hirschhorn
    The Ramanujan Journal, 2018, 45 : 517 - 520
  • [23] Broken 2-diamond partitions modulo 5
    Hirschhorn, Michael D.
    RAMANUJAN JOURNAL, 2018, 45 (02): : 517 - 520
  • [24] Turan inequalities for the broken k-diamond partition functions
    Dong, Janet J. W.
    Ji, Kathy Q.
    Jia, Dennis X. Q.
    RAMANUJAN JOURNAL, 2023, 62 (02): : 593 - 615
  • [25] Congruences modulo powers of 5 for k-colored partitions
    Tang, Dazhao
    JOURNAL OF NUMBER THEORY, 2018, 187 : 198 - 214
  • [26] Turán inequalities for the broken k-diamond partition functions
    Janet J. W. Dong
    Kathy Q. Ji
    Dennis X. Q. Jia
    The Ramanujan Journal, 2023, 62 : 593 - 615
  • [27] Congruences modulo powers of 3 for k-colored partitions
    Wen, Xin-Qi
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [28] Congruences modulo powers of 3 for k-colored partitions
    Wen, Xin-Qi
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025, 56 (01): : 324 - 338
  • [29] Congruences for broken 3-diamond and 7 dots bracelet partitions
    Su-Ping Cui
    Nancy S. S. Gu
    The Ramanujan Journal, 2014, 35 : 165 - 178
  • [30] Congruences for broken 3-diamond and 7 dots bracelet partitions
    Cui, Su-Ping
    Gu, Nancy S. S.
    RAMANUJAN JOURNAL, 2014, 35 (01): : 165 - 178