Congruences modulo 4 for broken k-diamond partitions

被引:0
|
作者
Ernest X. W. Xia
机构
[1] Jiangsu University,Department of Mathematics
来源
The Ramanujan Journal | 2018年 / 45卷
关键词
Broken ; -Diamond partition; Congruence; Theta function; 11P83; 05A17;
D O I
暂无
中图分类号
学科分类号
摘要
The notion of broken k-diamond partitions was introduced by Andrews and Paule. Let Δk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(n)$$\end{document} denote the number of broken k-diamond partitions of n for a fixed positive integer k. Recently, a number of parity results satisfied by Δk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(n)$$\end{document} for small values of k have been proved by Radu and Sellers and others. However, congruences modulo 4 for Δk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(n)$$\end{document} are unknown. In this paper, we will prove five congruences modulo 4 for Δ5(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _5(n)$$\end{document}, four infinite families of congruences modulo 4 for Δ7(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _7(n)$$\end{document} and one congruence modulo 4 for Δ11(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{11}(n)$$\end{document} by employing theta function identities. Furthermore, we will prove a new parity result for Δ2(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _2(n)$$\end{document}.
引用
收藏
页码:331 / 348
页数:17
相关论文
共 50 条
  • [31] Congruences modulo 4 for the number of 3-regular partitions
    Ballantine, Cristina
    Merca, Mircea
    COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 1577 - 1583
  • [32] The Laguerre inequality and determinantal inequality for the broken k-diamond partition function
    Yang, Eve Y. Y.
    RAMANUJAN JOURNAL, 2024, 64 (03): : 857 - 880
  • [33] Congruence properties modulo powers of 5 for broken 12-diamond partitions
    Tang, Dazhao
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2024, 39 (03)
  • [34] Ramanujan-type congruences modulo 4 for partitions into distinct parts
    Merca, Mircea
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (03): : 185 - 199
  • [35] Modulo 2 congruences for partitions with initial repetitions
    Nyirenda D.
    Mugwangwavari B.
    Boletín de la Sociedad Matemática Mexicana, 2023, 29 (3)
  • [36] CONGRUENCES MODULO SQUARES OF PRIMES FOR FU'S k DOTS BRACELET PARTITIONS
    Radu, Cristian-Silviu
    Sellers, James A.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (04) : 939 - 943
  • [37] Modulo 2 congruences for partitions with initial repetitions
    Nyirenda, Darlison
    Mugwangwavari, Beaullah
    arXiv, 2022,
  • [38] Two congruences involving Andrews-Paule's broken 3-diamond partitions and 5-diamond partitions
    Xiong, Xinhua
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2011, 87 (05) : 65 - 68
  • [39] Some congruences for Andrews-Paule's broken 2-diamond partitions
    Chan, Song Heng
    DISCRETE MATHEMATICS, 2008, 308 (23) : 5735 - 5741
  • [40] CONGRUENCES MODULO 5 AND 7 FOR 4-COLORED GENERALIZED FROBENIUS PARTITIONS
    Chan, Heng Huat
    Wang, Liuquan
    Yang, Yifan
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 103 (02) : 157 - 176