Congruences modulo 4 for broken k-diamond partitions

被引:0
|
作者
Ernest X. W. Xia
机构
[1] Jiangsu University,Department of Mathematics
来源
The Ramanujan Journal | 2018年 / 45卷
关键词
Broken ; -Diamond partition; Congruence; Theta function; 11P83; 05A17;
D O I
暂无
中图分类号
学科分类号
摘要
The notion of broken k-diamond partitions was introduced by Andrews and Paule. Let Δk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(n)$$\end{document} denote the number of broken k-diamond partitions of n for a fixed positive integer k. Recently, a number of parity results satisfied by Δk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(n)$$\end{document} for small values of k have been proved by Radu and Sellers and others. However, congruences modulo 4 for Δk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(n)$$\end{document} are unknown. In this paper, we will prove five congruences modulo 4 for Δ5(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _5(n)$$\end{document}, four infinite families of congruences modulo 4 for Δ7(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _7(n)$$\end{document} and one congruence modulo 4 for Δ11(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{11}(n)$$\end{document} by employing theta function identities. Furthermore, we will prove a new parity result for Δ2(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _2(n)$$\end{document}.
引用
收藏
页码:331 / 348
页数:17
相关论文
共 50 条
  • [41] Infinitely many congruences modulo 5 for 4-colored Frobenius partitions
    Michael D. Hirschhorn
    James A. Sellers
    The Ramanujan Journal, 2016, 40 : 193 - 200
  • [42] Infinitely many congruences modulo 5 for 4-colored Frobenius partitions
    Hirschhorn, Michael D.
    Sellers, James A.
    RAMANUJAN JOURNAL, 2016, 40 (01): : 193 - 200
  • [43] Congruences for 9-regular partitions modulo 3
    Cui, Su-Ping
    Gu, Nancy S. S.
    RAMANUJAN JOURNAL, 2015, 38 (03): : 503 - 512
  • [44] General congruences modulo 5 and 7 for colour partitions
    Saikia, Nipen
    Boruah, Chayanika
    JOURNAL OF ANALYSIS, 2021, 29 (03): : 917 - 926
  • [45] Congruences for partitions with odd parts distinct modulo 5
    Cui, Su-Ping
    Gu, Wen Xiang
    Ma, Zhen Sheng
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (07) : 2151 - 2159
  • [46] Congruences for 9-regular partitions modulo 3
    William J. Keith
    The Ramanujan Journal, 2014, 35 : 157 - 164
  • [47] Congruences for 9-regular partitions modulo 3
    Keith, William J.
    RAMANUJAN JOURNAL, 2014, 35 (01): : 157 - 164
  • [48] CONGRUENCES MODULO 5 FOR PARTITIONS INTO AT MOST FOUR PARTS
    Hirschhorn, Michael D.
    FIBONACCI QUARTERLY, 2018, 56 (01): : 32 - 37
  • [49] Congruences for 9-regular partitions modulo 3
    Su-Ping Cui
    Nancy S. S. Gu
    The Ramanujan Journal, 2015, 38 : 503 - 512
  • [50] General congruences modulo 5 and 7 for colour partitions
    Nipen Saikia
    Chayanika Boruah
    The Journal of Analysis, 2021, 29 : 917 - 926