Parameter estimation for building energy models using GRcGAN

被引:4
|
作者
Shin, Hansol [1 ]
Park, Cheol-Soo [1 ,2 ]
机构
[1] Seoul Natl Univ, Coll Engn, Dept Architecture & Architectural Engn, Seoul 08826, South Korea
[2] Seoul Natl Univ, Inst Construct & Environm Engn, Inst Engn Res, Coll Engn, Seoul 08826, South Korea
关键词
generative adversarial networks; generative model; parameter estimation; inverse problem; model calibration; parameter uncertainty; BAYESIAN CALIBRATION; UNCERTAINTY; SIMULATION; OPTIMIZATION; PERFORMANCE; PREDICTION;
D O I
10.1007/s12273-022-0965-1
中图分类号
O414.1 [热力学];
学科分类号
摘要
Parameter estimation methods can be classified into (1) manual (trial-and-error), (2) numerical optimization (optimization, sampling), (3) Bayesian inference (Bayes filter, Bayesian calibration), and (4) machine learning (generative model). Bayesian calibration has been widely used because it can capture stochastic nature of uncertain parameters. However, the results of Bayesian calibration could be biased by (1) the prior distribution assumed by the expert's subjective judgment; (2) the likelihood function that cannot always describe the true likelihood; and (3) the posterior distribution approximation method, such as the Markov Chain Monte Carlo, which requires significant computation time. To overcome this, a new approach using a generator-regularized continuous conditional generative adversarial network (GRcGAN) is presented in this paper. Five target parameters of the DOE reference building model were selected. GRcGAN was trained to estimate uncertain parameters using simulated monthly electricity and gas use. GRcGAN can successfully estimate five uncertain parameters based on 1,000 training data points. The proposed approach presents a potential for stochastic parameter estimation.
引用
收藏
页码:629 / 639
页数:11
相关论文
共 50 条
  • [31] Parameter estimation of nonlinear Muskingum models using genetic algorithm
    Mohan, S.
    Journal of Hydraulic Engineering, 1997, 123 (02): : 137 - 142
  • [32] MULTIPLICATIVE NOISE MODELS - PARAMETER-ESTIMATION USING CUMULANTS
    SWAMI, A
    SIGNAL PROCESSING, 1994, 36 (03) : 355 - 373
  • [33] Parameter estimation using optimization methods in land subsidence models
    Esaki, T
    Zhou, GY
    Jiang, YJ
    LAND SUBSIDENCE CASE STUDIES AND CURRENT RESEARCH: PROCEEDINGS OF THE DR. JOSEPH F. POLAND SYMPOSIUM ON LAND SUBSIDENCE, 1998, (08): : 249 - 255
  • [34] Using metaheuristic algorithms for parameter estimation in generalized Mallows models
    Aledo, Juan A.
    Gamez, Jose A.
    Molina, David
    APPLIED SOFT COMPUTING, 2016, 38 : 308 - 320
  • [35] PARAMETER ESTIMATION IN MODELS OF CELL SURVIVAL USING SCALED TIME
    Wright, Neil T.
    PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE - 2013, PT B, 2014,
  • [36] Optimal selection of estimates for parameter estimation using multiple models
    Li, XR
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 1052 - 1053
  • [37] Piezoelectric shunting parameter estimation using electrical impedance models
    Ryu, YH
    Kim, J
    Cheong, CC
    SMART STRUCTURES AND MATERIALS 2000: DAMPING AND ISOLATION, 2000, 3989 : 39 - 48
  • [38] Parameter estimation in thermalhydraulic models using the multidirectional search method
    Carlos, S
    Ginestar, D
    Martorell, S
    Serradell, V
    ANNALS OF NUCLEAR ENERGY, 2003, 30 (02) : 133 - 158
  • [39] Parameter Estimation for Stochastic Channel Models using Temporal Moments
    Bharti, Ayush
    Adeogun, Ramoni
    Pedersen, Troels
    2019 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND USNC-URSI RADIO SCIENCE MEETING, 2019, : 1267 - 1268
  • [40] On parameter estimation for neuron models
    Madden, JL
    Ben Miled, Z
    Chin, RCY
    Schild, J
    IEEE INTERNATIONAL SYMPOSIUM ON BIO-INFORMATICS AND BIOMEDICAL ENGINEERING, PROCEEDINGS, 2000, : 253 - 262