Parameter estimation for building energy models using GRcGAN

被引:4
|
作者
Shin, Hansol [1 ]
Park, Cheol-Soo [1 ,2 ]
机构
[1] Seoul Natl Univ, Coll Engn, Dept Architecture & Architectural Engn, Seoul 08826, South Korea
[2] Seoul Natl Univ, Inst Construct & Environm Engn, Inst Engn Res, Coll Engn, Seoul 08826, South Korea
关键词
generative adversarial networks; generative model; parameter estimation; inverse problem; model calibration; parameter uncertainty; BAYESIAN CALIBRATION; UNCERTAINTY; SIMULATION; OPTIMIZATION; PERFORMANCE; PREDICTION;
D O I
10.1007/s12273-022-0965-1
中图分类号
O414.1 [热力学];
学科分类号
摘要
Parameter estimation methods can be classified into (1) manual (trial-and-error), (2) numerical optimization (optimization, sampling), (3) Bayesian inference (Bayes filter, Bayesian calibration), and (4) machine learning (generative model). Bayesian calibration has been widely used because it can capture stochastic nature of uncertain parameters. However, the results of Bayesian calibration could be biased by (1) the prior distribution assumed by the expert's subjective judgment; (2) the likelihood function that cannot always describe the true likelihood; and (3) the posterior distribution approximation method, such as the Markov Chain Monte Carlo, which requires significant computation time. To overcome this, a new approach using a generator-regularized continuous conditional generative adversarial network (GRcGAN) is presented in this paper. Five target parameters of the DOE reference building model were selected. GRcGAN was trained to estimate uncertain parameters using simulated monthly electricity and gas use. GRcGAN can successfully estimate five uncertain parameters based on 1,000 training data points. The proposed approach presents a potential for stochastic parameter estimation.
引用
收藏
页码:629 / 639
页数:11
相关论文
共 50 条
  • [41] Parameter estimation in dynamical models
    Evensen, G
    Dee, DP
    Schröter, J
    OCEAN MODELING AND PARAMETERIZATION, 1998, 516 : 373 - 398
  • [42] Regression Models and Shape Descriptors for Building Energy Demand and Comfort Estimation
    Storcz, Tamas
    Varady, Geza
    Kistelegdi, Istvan
    Ercsey, Zsolt
    ENERGIES, 2023, 16 (16)
  • [43] On parameter estimation in population models
    Ross, J. V.
    Taimre, T.
    Pollett, P. K.
    THEORETICAL POPULATION BIOLOGY, 2006, 70 (04) : 498 - 510
  • [44] Estimation in Discrete Parameter Models
    Choirat, Christine
    Seri, Raffaello
    STATISTICAL SCIENCE, 2012, 27 (02) : 278 - 293
  • [45] Parameter estimation for Muskingum models
    Das, A
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2004, 130 (02) : 140 - 147
  • [46] PARAMETER ESTIMATION IN MULTIRESPONSE MODELS
    HOSTEN, LH
    FROMENT, GF
    PERIODICA POLYTECHNICA-CHEMICAL ENGINEERING, 1975, 19 (1-2) : 123 - 136
  • [47] Parameter estimation for neuron models
    Tokuda, I
    Parlitz, U
    Illing, L
    Kennel, M
    Abarbanel, H
    EXPERIMENTAL CHAOS, 2003, 676 : 251 - 256
  • [48] On parameter estimation in deformable models
    Fisker, R
    Carstensen, JM
    FOURTEENTH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1 AND 2, 1998, : 762 - 766
  • [49] Mixture models: building a parameter space
    Maroufy, Vahed
    Marriott, Paul
    STATISTICS AND COMPUTING, 2017, 27 (03) : 591 - 597
  • [50] Mixture models: building a parameter space
    Vahed Maroufy
    Paul Marriott
    Statistics and Computing, 2017, 27 : 591 - 597