Parameter estimation for building energy models using GRcGAN

被引:4
|
作者
Shin, Hansol [1 ]
Park, Cheol-Soo [1 ,2 ]
机构
[1] Seoul Natl Univ, Coll Engn, Dept Architecture & Architectural Engn, Seoul 08826, South Korea
[2] Seoul Natl Univ, Inst Construct & Environm Engn, Inst Engn Res, Coll Engn, Seoul 08826, South Korea
关键词
generative adversarial networks; generative model; parameter estimation; inverse problem; model calibration; parameter uncertainty; BAYESIAN CALIBRATION; UNCERTAINTY; SIMULATION; OPTIMIZATION; PERFORMANCE; PREDICTION;
D O I
10.1007/s12273-022-0965-1
中图分类号
O414.1 [热力学];
学科分类号
摘要
Parameter estimation methods can be classified into (1) manual (trial-and-error), (2) numerical optimization (optimization, sampling), (3) Bayesian inference (Bayes filter, Bayesian calibration), and (4) machine learning (generative model). Bayesian calibration has been widely used because it can capture stochastic nature of uncertain parameters. However, the results of Bayesian calibration could be biased by (1) the prior distribution assumed by the expert's subjective judgment; (2) the likelihood function that cannot always describe the true likelihood; and (3) the posterior distribution approximation method, such as the Markov Chain Monte Carlo, which requires significant computation time. To overcome this, a new approach using a generator-regularized continuous conditional generative adversarial network (GRcGAN) is presented in this paper. Five target parameters of the DOE reference building model were selected. GRcGAN was trained to estimate uncertain parameters using simulated monthly electricity and gas use. GRcGAN can successfully estimate five uncertain parameters based on 1,000 training data points. The proposed approach presents a potential for stochastic parameter estimation.
引用
收藏
页码:629 / 639
页数:11
相关论文
共 50 条
  • [21] A novel efficient optimization algorithm for parameter estimation of building thermal dynamic models
    Wang, Jiangyu
    Chen, Huanxin
    Yuan, Yue
    Huang, Yao
    BUILDING AND ENVIRONMENT, 2019, 153 : 233 - 240
  • [22] Structural observability analysis and EKF based parameter estimation of building heating models
    Perera, D. Wathsala U.
    Perera, M. Anushka S.
    Pfeiffer, Carlos F.
    Skeie, Nils-Olav
    MODELING IDENTIFICATION AND CONTROL, 2016, 37 (03) : 171 - 180
  • [23] Development and validation of online models with parameter estimation for a building zone with VAV system
    Wen, Jin
    Smith, Theodore F.
    ENERGY AND BUILDINGS, 2007, 39 (01) : 13 - 22
  • [24] PARAMETER-ESTIMATION USING TRANSFORM ESTIMATION IN TIME-EVOLVING MODELS
    SCHUH, HJ
    TWEEDIE, RL
    MATHEMATICAL BIOSCIENCES, 1979, 45 (1-2) : 37 - 67
  • [25] Approximate dynamic models using simultaneous parameter estimation.
    Law, VJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U679 - U679
  • [26] Parameter estimation using macroscopic diffusion MRI signal models
    Hang Tuan Nguyen
    Grebenkov, Denis
    Dang Van Nguyen
    Poupon, Cyril
    Le Bihan, Denis
    Li, Jing-Rebecca
    PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (08): : 3389 - 3413
  • [27] Parameter estimation of generalized backscatter models using entropy maximization
    Smolíková, R
    Wachowiak, MP
    Zurada, JM
    MEDICAL IMAGING 2003: ULTRASONIC IMAGING AND SIGNAL PROCESSING, 2003, 5035 : 480 - 490
  • [28] Parameter estimation for unsaturated flow models using sensitivity analysis
    Nutzmann, G
    Thiele, M
    COMPUTATIONAL METHODS IN SURFACE AND GROUND WATER TRANSPORT: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL METHODS IN WATER RESOURCES, VOL 2, 1998, 12 : 345 - 352
  • [29] Parameter estimation of nonlinear muskingum models using genetic algorithm
    Mohan, S
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1997, 123 (02): : 137 - 142
  • [30] Parameter estimation in systems biology models using spline approximation
    Zhan, Choujun
    Yeung, Lam F.
    BMC SYSTEMS BIOLOGY, 2011, 5