Parameter estimation using optimization methods in land subsidence models

被引:0
|
作者
Esaki, T [1 ]
Zhou, GY [1 ]
Jiang, YJ [1 ]
机构
[1] Kyushu Univ, Inst Environm Syst, Fukuoka 81281, Japan
关键词
D O I
暂无
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Mathematical models can be used to predict the magnitude and the rate of land subsidence in alluvial aquifer systems. In general, mathematical models simplify the variability of geologic and hydrologic systems. The accuracy of subsidence estimates from such models is dependent, among other things, on realistic values for geologic, hydraulic, and deformation parameters used in the models. These parameters have some degree of uncertainty; moreover, parameters determined from laboratory tests usually cannot reflect the complicated structure of deforming layers. These factors affect the accuracy and reliability of land subsidence predictions. Optimization methods were used to determine the parameters necessary for simulating ground-water flow and land subsidence in the Saga Plain in coastal Japan. Using optimal parameters, which account for variability in geologic and hydrologic systems, model results compare favorably with field observations. The model has become an useful tool for government agencies that must mitigate subsidence.
引用
收藏
页码:249 / 255
页数:7
相关论文
共 50 条
  • [1] Benchmarking optimization methods for parameter estimation in large kinetic models
    Villaverde, Alejandro F.
    Froehlich, Fabian
    Weindl, Daniel
    Hasenauer, Jan
    Banga, Julio R.
    BIOINFORMATICS, 2019, 35 (05) : 830 - 838
  • [2] Improving parameter estimation using constrained optimization methods
    Castillo, Enrique
    Minguez, Roberto
    Castillo, Carmen
    Hadi, Ali S.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (10) : 1471 - 1499
  • [3] Parameter estimation of a land surface scheme using multicriteria methods
    Gupta, HV
    Bastidas, LA
    Sorooshian, S
    Shuttleworth, WJ
    Yang, ZL
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D16) : 19491 - 19503
  • [4] Parameter Estimation of Joint Models Using Global Optimization
    Kuether, Robert J.
    Najera, David A.
    DYNAMICS OF COUPLED STRUCTURES, VOL 4, 2017, : 29 - 39
  • [5] Parameter Estimation of Statistical Models Using Convex Optimization
    Jiang, Hui
    Li, Xinwei
    IEEE SIGNAL PROCESSING MAGAZINE, 2010, 27 (03) : 115 - 127
  • [6] Spatial modeling of land subsidence using machine learning models and statistical methods
    Sekkeravani, Mohsen Abbasi
    Bazrafshan, Ommolbanin
    Pourghasemi, Hamid Reza
    Holisaz, Arashk
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (19) : 28866 - 28883
  • [7] Spatial modeling of land subsidence using machine learning models and statistical methods
    Mohsen Abbasi Sekkeravani
    Ommolbanin Bazrafshan
    Hamid Reza Pourghasemi
    Arashk Holisaz
    Environmental Science and Pollution Research, 2022, 29 : 28866 - 28883
  • [8] Parameter estimation of nonlinear models in biochemistry:: a comparative study on optimization methods
    Yildirim, N
    Akçay, F
    Okur, H
    Yidirim, D
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 140 (01) : 29 - 36
  • [9] Land subsidence prediction in coal mining using machine learning models and optimization techniques
    Jahanmiri S.
    Noorian-Bidgoli M.
    Environmental Science and Pollution Research, 2024, 31 (22) : 31942 - 31966
  • [10] Parameter estimation of fire propagation models using level set methods
    Alessandri, Angelo
    Bagnerini, Patrizia
    Gaggero, Mauro
    Mantelli, Luca
    APPLIED MATHEMATICAL MODELLING, 2021, 92 : 731 - 747