Parameter estimation using optimization methods in land subsidence models

被引:0
|
作者
Esaki, T [1 ]
Zhou, GY [1 ]
Jiang, YJ [1 ]
机构
[1] Kyushu Univ, Inst Environm Syst, Fukuoka 81281, Japan
关键词
D O I
暂无
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Mathematical models can be used to predict the magnitude and the rate of land subsidence in alluvial aquifer systems. In general, mathematical models simplify the variability of geologic and hydrologic systems. The accuracy of subsidence estimates from such models is dependent, among other things, on realistic values for geologic, hydraulic, and deformation parameters used in the models. These parameters have some degree of uncertainty; moreover, parameters determined from laboratory tests usually cannot reflect the complicated structure of deforming layers. These factors affect the accuracy and reliability of land subsidence predictions. Optimization methods were used to determine the parameters necessary for simulating ground-water flow and land subsidence in the Saga Plain in coastal Japan. Using optimal parameters, which account for variability in geologic and hydrologic systems, model results compare favorably with field observations. The model has become an useful tool for government agencies that must mitigate subsidence.
引用
收藏
页码:249 / 255
页数:7
相关论文
共 50 条
  • [41] Photovoltaic Parameter Estimation Using Heuristic Optimization
    Mirzapour, Omid
    Arpanahi, Sahand Karimi
    2017 IEEE 4TH INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED ENGINEERING AND INNOVATION (KBEI), 2017, : 792 - 797
  • [42] State and parameter estimation using unconstrained optimization
    Schumann-Bischoff, Jan
    Parlitz, Ulrich
    PHYSICAL REVIEW E, 2011, 84 (05):
  • [43] A New Zonation Algorithm with Parameter Estimation Using Hydraulic Head and Subsidence Observations
    Zhang, Meijing
    Burbey, Thomas J.
    Nunes, Vitor Dos Santos
    Borggaard, Jeff
    GROUNDWATER, 2014, 52 (04) : 514 - 524
  • [44] Parameter estimation using biologically inspired methods
    Lin, Weixing
    Liu, Rong
    Liu, Peter X.
    Meng, Max Q. -H.
    2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, VOLS 1-5, 2007, : 1339 - +
  • [45] On parameter estimation using nonparametric noise models
    Mahata, Kaushik
    Pintelon, Rik
    Schoukens, Johan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (10) : 1602 - 1612
  • [46] Parameter estimation in biochemical pathways: A comparison of global optimization methods
    Moles, CG
    Mendes, P
    Banga, JR
    GENOME RESEARCH, 2003, 13 (11) : 2467 - 2474
  • [47] NUMERICAL-MODELS IN LAND SUBSIDENCE CONTROL
    GAMBOLATI, G
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1975, 56 (03): : 163 - 163
  • [48] Land subsidence prediction by various grey models
    Li, T
    Huang, SL
    Zhou, CH
    ENVIRONMENTAL INFORMATICS, PROCEEDINGS, 2005, : 403 - 410
  • [49] Parameter estimation in nonlinear algebraic models via global optimization
    Esposito, WR
    Floudas, CA
    COMPUTERS & CHEMICAL ENGINEERING, 1998, 22 : S213 - S220
  • [50] An integration based optimization approach for parameter estimation in dynamic models
    Yuceer, M
    Atasoy, I
    Berber, R
    European Symposium on Computer-Aided Process Engineering-15, 20A and 20B, 2005, 20a-20b : 631 - 636