Parameter estimation using optimization methods in land subsidence models

被引:0
|
作者
Esaki, T [1 ]
Zhou, GY [1 ]
Jiang, YJ [1 ]
机构
[1] Kyushu Univ, Inst Environm Syst, Fukuoka 81281, Japan
关键词
D O I
暂无
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Mathematical models can be used to predict the magnitude and the rate of land subsidence in alluvial aquifer systems. In general, mathematical models simplify the variability of geologic and hydrologic systems. The accuracy of subsidence estimates from such models is dependent, among other things, on realistic values for geologic, hydraulic, and deformation parameters used in the models. These parameters have some degree of uncertainty; moreover, parameters determined from laboratory tests usually cannot reflect the complicated structure of deforming layers. These factors affect the accuracy and reliability of land subsidence predictions. Optimization methods were used to determine the parameters necessary for simulating ground-water flow and land subsidence in the Saga Plain in coastal Japan. Using optimal parameters, which account for variability in geologic and hydrologic systems, model results compare favorably with field observations. The model has become an useful tool for government agencies that must mitigate subsidence.
引用
收藏
页码:249 / 255
页数:7
相关论文
共 50 条
  • [21] Fast optimization-based elasticity parameter estimation using reduced models
    Huai-Ping Lee
    Ming C. Lin
    The Visual Computer, 2012, 28 : 553 - 562
  • [22] Parameter estimation in general state-space models using particle methods
    Arnaud Doucet
    Vladislav B. Tadić
    Annals of the Institute of Statistical Mathematics, 2003, 55 : 409 - 422
  • [23] Parameter estimation in general state-space models using particle methods
    Doucet, A
    Tadic, VB
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2003, 55 (02) : 409 - 422
  • [24] Parameter sensitivity analysis for different complexity land surface models using multicriteria methods
    Bastidas, L. A.
    Hogue, T. S.
    Sorooshian, S.
    Gupta, H. V.
    Shuttleworth, W. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D20)
  • [25] Parameter Estimation in Computational Systems Biology Models: A Comparative Study of Initialization Methods in Global Optimization
    Remli, Muhammad Akmal
    Ismail, Nor-Syahidatul N.
    Sahabudin, Noor Azida
    Abd Warif, Nor Bakiah
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (08) : 473 - 478
  • [26] Parameter space methods in joint parameter estimation for groundwater flow models
    Weiss, R
    Smith, L
    WATER RESOURCES RESEARCH, 1998, 34 (04) : 647 - 661
  • [27] Estimation of land subsidence hazard using interferometry of satellite radar images
    Mohammadhasani, Mohammad
    Kermani, Behnaz Sheykh Shariati
    Jameel, Mohammed
    Hakim, S. J. S.
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-FORENSIC ENGINEERING, 2023, 176 (03) : 103 - 110
  • [28] Implementation of parameter estimation in mechanistic models by dynamic optimization
    Zhu, Xuemei
    Liu, Rucheng
    Wang, Shuqing
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 7683 - 7687
  • [29] Parameter Estimation for Mixture Models via Convex Optimization
    Li, Yuanxin
    Chi, Yuejie
    2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 483 - 487
  • [30] Optimization techniques for parameter estimation of dynamic load models
    Barzegkar-Ntovom, Georgios A.
    Ceylan, Oguzhan
    Papadopoulos, Theofilos A.
    2017 52ND INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC), 2017,